留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高温气冷堆的核石墨

周湘文 唐亚平 卢振明 张杰 刘兵

周湘文, 唐亚平, 卢振明, 张杰, 刘兵. 用于高温气冷堆的核石墨. 新型炭材料, 2017, 32(3): 193-204. doi: 10.1016/S1872-5805(17)60116-1
引用本文: 周湘文, 唐亚平, 卢振明, 张杰, 刘兵. 用于高温气冷堆的核石墨. 新型炭材料, 2017, 32(3): 193-204. doi: 10.1016/S1872-5805(17)60116-1
ZHOU Xiang-wen, TANG Ya-ping, LU Zhen-ming, ZHANG Jie, LIU Bing. Nuclear graphite for high temperature gas-cooled reactors. New Carbon Mater., 2017, 32(3): 193-204. doi: 10.1016/S1872-5805(17)60116-1
Citation: ZHOU Xiang-wen, TANG Ya-ping, LU Zhen-ming, ZHANG Jie, LIU Bing. Nuclear graphite for high temperature gas-cooled reactors. New Carbon Mater., 2017, 32(3): 193-204. doi: 10.1016/S1872-5805(17)60116-1

用于高温气冷堆的核石墨

doi: 10.1016/S1872-5805(17)60116-1
基金项目: 国家公派留学基金(201406215002);国家科技重大专项(ZX06901);清华大学自主科研项目(20121088038).
详细信息
    通讯作者:

    周湘文,副教授,博士.E-mail:xiangwen@tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Nuclear graphite for high temperature gas-cooled reactors

Funds: State Scholarship Foundation of China (201406215002);Chinese National S&T Major Project (ZX06901);Tsinghua University Initiative Scientific Research Program (20121088038).
  • 摘要: 自1942年首次在CP-1反应堆中使用以来,核石墨因其优异的综合性能,在核反应堆特别高温气冷堆中被广泛使用。作为第四代候选堆型之一,高温气冷堆主要包括球床堆和柱状堆两种堆型。在两种堆型中,石墨主要用作慢化剂、燃料元件基体材料及堆内结构材料。在反应堆运行中,中子辐照使得石墨的相关性能下降甚至可能失效。原材料及成型方式对于石墨的结构、性能及其在辐照中的表现起到决定性的作用。辐照中石墨微观结构及尺寸的变化是其宏观热力学性能变化的内在原因,辐照温度及剂量对于石墨的结构及性能变化起决定性作用。本文介绍了高温气冷堆中核石墨的性能要求及核石墨的生产流程,阐述了不同温度及辐照条件下石墨热力学性能及微观结构的变化规律,并对当前国内外核石墨的研究现状及未来核石墨的长期发展如焦炭的稳定供应和石墨的回收进行讨论。本文可为有志于研发用于未来我国商业化的高温气冷堆中的核石墨的生产厂家提供参考。
  • Fermi E. Experimental production of a divergent chain reaction[J]. American Journal of Physics, 1952, 20:536-558.
    International Atomic Energy Agency, 2001. Current status and future development of modular high temperature gas cooled reactor technology[Z]. IAEA-TECDOC-1198, p13-26.
    Zongxin Wu, Dengcai Lin, Daxin Zhong. The design features of the HTR-10[J]. Nuclear Engineering and Design, 2002, 218:25-32.
    Zuoyi Zhang, Zongxin Wu, Dazhong Wang, et al. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant[J]. Nuclear Engineering and Design, 2009, 239:1212-1219.
    Nightingale R E. Nuclear Graphite[M]. Academic Press, 1962.
    Chunhe Tang, Yaping Tang, Junguo Zhu, et al. Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor[J]. Nuclear Engineering and Design, 2002, 218:91-102.
    Xiangwen Zhou, Zhenming Lu, Jie Zhang, et al. Preparation of spherical fuel elements for HTR-PM in INET[J]. Nuclear Engineering and Design, 2013, 263:456-461.
    Http://www.world-nuclear.org/info/Country-Profiles/Countries-A-F/China-Nuclear-Power. Nuclear Power in China (Updated August 2015).
    Haag G, Mindermann D, Wilhelmi G, et al. Development of nuclear graphite[J]. Journal of Nuclear Materials, 1990, 171:41-48.
    Burchell T, Bratton R, Windes W. NGNP graphite selection and acquisition strategy[R]. ORNL/TM-2007/153, September, 2007.
    Burchell T. Thermal Properties and Nuclear Energy Applications, Vol. 1, Chap. 5 in Graphite and Precursors:World of Carbon[M]. edited by Pierre Delhaes, 87-109. Amsterdam:Gordon and Breach Science Publishers, 2001.
    Myerscough P B. Modern power station practice:Nuclear power generation (3rd edition)[Z]. Pergamon, 1993, 1-49.
    Burchell T. Carbon materials for advanced technology[Z]. Pergamon, 1999.
    Mrozowski S. Mechanical strength, thermal expansion and structure of cokes and carbons[C]. In:First biannual conference on carbon, Buffalo; 1953.
    ASTM C747-93. Standard Test Method for Moduli of Elasticity and Fundamental Frequencies of Carbon and Graphite Materials by Sonic Resonance[S].
    Rycroft C H, Grest G S, Landry J W, et al. Analysis of granular flow in a pebble-bed nuclear reactor[J]. Physical Review E, 2006, 74(2):021306.
    Xiaowei Luo, Xiaotian Li, Suyuan Yu. Nuclear graphite friction properties and the influence of friction properties on the pebble bed[J]. Nuclear Engineering and Design, 2010, 240:2674-2681.
    Eggers D F, Gregory N W, Halsey G D, et al. Physical Chemistry[M]. John Wiley & Sons, New York, 1967.
    Preston S D, Marsden B J. Changes in the coefficient of thermal expansion in stressed Gilsocarbon graphite[J]. Carbon, 2006, 44:1250-1257.
    Entegris. Properties and characteristics of graphite for the semiconductor industry[Z]. May 2013.
    Windes W, Burchell T, Bratton R. Graphite technology development plan[R]. INL/EXT-07-13165, September 2007.
    Swank W. AGC-1 post-irradiation examination status[R]. INL/EXT-11-23165, September, 2011.
    Windes W, Swank W, Rohrbaugh D, et al. AGC-2 graphite preirradiation data analysis report[R]. INL/EXT-13-28612, Revision 1, August 2013.
    Hui Yang, Yufa Chen, He Li, et al. Nuclear graphite development and neutron irradiation testing programme in Sinosteel AMC[C]. The 15th International Nuclear Graphite Specialist Meeting (INGSM-15), Hangzhou, September 2014.
  • 加载中
图(1)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  176
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-26
  • 录用日期:  2017-06-28
  • 修回日期:  2017-05-13
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回