留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石油沥青和葡萄糖热解炭的可逆储钠性能研究

董伟 杨绍斌 沈丁 王晓亮 李思南 孙闻

董伟, 杨绍斌, 沈丁, 王晓亮, 李思南, 孙闻. 石油沥青和葡萄糖热解炭的可逆储钠性能研究. 新型炭材料, 2017, 32(3): 227-233.
引用本文: 董伟, 杨绍斌, 沈丁, 王晓亮, 李思南, 孙闻. 石油沥青和葡萄糖热解炭的可逆储钠性能研究. 新型炭材料, 2017, 32(3): 227-233.
DONG Wei, YANG Shao-bin, SHEN Ding, WANG Xiao-liang, LI Si-nan, SUN Wen. Performance of pitch and glucose pyrocarbons for reversible sodium storage. New Carbon Mater., 2017, 32(3): 227-233.
Citation: DONG Wei, YANG Shao-bin, SHEN Ding, WANG Xiao-liang, LI Si-nan, SUN Wen. Performance of pitch and glucose pyrocarbons for reversible sodium storage. New Carbon Mater., 2017, 32(3): 227-233.

石油沥青和葡萄糖热解炭的可逆储钠性能研究

基金项目: 国家自然科学基金项目(51274119).
详细信息
    通讯作者:

    杨绍斌,博士,教授.E-mail:lgdysb@163.com

  • 中图分类号: O646

Performance of pitch and glucose pyrocarbons for reversible sodium storage

Funds: National Natural Science Foundation of China (51274119).
  • 摘要: 以石油沥青和葡萄糖为原料,在氮气保护下采用高温热解的方法制备了沥青热解炭和葡萄糖热解炭负极材料。结果表明,葡萄糖热解炭比沥青热解炭层间距大、无定形程度大且含氧量多。葡萄糖热解炭首次放电容量171.9 mAh/g,沥青热解炭首次放电容量为79.2 mAh/g。20次循环以后葡萄糖热解炭和沥青热解炭容量保持率分别为94.6%和68.2%。循环伏安分析表明,沥青热解炭在低电位下的不可逆还原峰的出现电位更低,比葡萄糖热解碳降低了0.13 V。交流阻抗分析表明葡萄糖热解炭的SEI膜阻抗、界面阻抗及扩散阻抗均明显小于沥青热解炭。
  • Winter M, Brodd R J. What are batteries, fuel cells, and super capacitors[J]. Chemical reviews, 2004, 104(10):4245-4270.
    Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(6058):928-935.
    胡彬. 钛基钠离子电池负极材料制备与性能研究[D]. 上海交通大学, 2014.
    李慧, 吴川, 吴锋, 等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014, 01:21-29. (Li Hui, Wu Chuan, Wu Feng, et al. Sodium ion battery:A promising energy-storage candidate for supporting renewable electricity[J]. Aota Chimica Sinica, 2014, 01:21-29.)
    Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
    宋刘斌, 李新海, 王志兴, 等. 锂离子电池充放电过程中的热行为及有限元模拟研究[J]. 功能材料, 2013, 08:1153-1158. (Song L B,Li X H,Wang Z X, et al. Finite element analysis and thermal behavior of lithium ion cells during charge-discharge process[J]. Journal of Functional Materials, 2013, 8(44):1153-1158.)
    Palacín M R. Recent advances in rechargeable battery materials:a chemist's perspective[J]. Chemical Society Reviews, 2009, 38(9):2565-2575.
    Lu Y, Zhang S, Li Y, et al. Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries[J]. Journal of Power Sources, 2014, 247:770-777.
    Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8):2338-2360.
    Palomares V, Casas-Cabanas M, Castillo-Martínez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8):2312-2337.
    何菡娜, 王海燕, 唐有根, 等. 钠离子电池负极材料[J]. 化学进展, 2014, 04:572-581. (HE Han-na, WANG Hai-yan, TANG You-gen, et al. Current studies of anode materials for sodium-ion battery[J]. Progress In Chemistry, 2014, 04:572-581.)
    金翼, 孙信, 余彦, 等. 钠离子储能电池关键材料[J]. 化学进展, 2014, 04:582-591. (Jin Yi, Sun Xin, Yu Yan, et al. Research progress in sodium ion battery materials for energy storage[J]. Progress In Chemistry, 2014, 04:582-591.)
    钱江锋, 高学平, 杨汉西. 电化学储钠材料的研究进展[J]. 电化学, 2013, 06:523-529. (QIAN Jiang-feng, GAO Xue-ping,YANG Han-xi. Electrochemical Na-storage materials and their applications for Na-ion batteries[J]. Journal of Electrochemistry, 2013, 06:523-529.)
    许婧, 杨德志, 廖小珍, 等. 还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能[J]. 物理化学学报, 2015, 05:913-919. (XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, et al. Electrochemical performances of reduced graphene oxide/titanium dioxide composites for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2015, 05:913-919.)
    黄宗令, 王丽平, 牟成旭, 等. 对苯二甲酸镁作为钠离子电池的有机负极材料[J]. 物理化学学报, 2014, 10:1787-1793. (HUANG Zong-Ling, WANG Li-Ping, MOU Cheng-Xu, et al. Magnesium terephthalate as an organic anode material for sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2014, 10:1787-1793.)
    Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28:1172-1175.
    Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society, 2001, 148(8):803-811.
    Chevrier V L, Ceder G. Challenges for Na-ion negative electrodes[J]. Journal of the Electrochemical Society, 2011, 158(9):1011-1014.
    Bommier C, Luo W, Gao W Y, et al. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements[J]. Carbon, 2014, 76:165-174.
    Alca ‘ntara R, Jime’nez-Mateos JM, Lavela P, et al. Carbon black:a promising electrode material for sodium-ion batteries[J]. Electrochem Commum 2001, 3:639-40.
    Alcántara R, Lavela P, Ortiz G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4):222-225.
    Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano letters, 2012, 12(7):3783-3787.
    钱江锋. 先进储钠电极材料及其电化学储能应用[D].武汉大学, 2012.
    Azuma H, Imoto H, Yamada S, et al. Advanced carbon anode materials for lithium ion cells[J]. Journal of power sources, 1999, 81:1-7.
    孙颢, 蒲薇华, 何向明, 等. 锂离子电池硬碳负极材料研究进展[J]. 化工新型材料, 2005, 11:10-13. (Sun Ying, Pu Weihua, He Xiangming, et al. Progress in hard carbon anode materials for Li-ion battery[J]. New Chemical Materials, 2005, 11:10-13.)
    Ferrari A C. Robertson, raman spectroscopy of hydrogenated amorphous carbons[J]. J Phys Rev B, 2000, 61:14095.
    Acik M, Mattevi C, Gong C, et al.The role of intercalated water in multilayered graphene oxide[J]. ACS Nano, 2010, 4(10):5861-5868.
    Ponrouch A, Goñi A R, Palacín M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27:85-88.
    Peled E, Menachem C, Bar-Tow D, et al. Improved graphite anode for lithium-ion batteries chemically bonded solid electrolyte interface and nanochannel formation[J]. Journal of the Electrochemical Society, 1996, 143(1):4-7.
    吴宇平, 万春荣, 姜长印, 等. 锂离子二次电池碳负极材料的改性[J]. 电化学, 1998, 03:54-60. (WU Yu-ping, WAN Chun-rong, JIANG Chang-yin, et al. Modification of carbon anode materials of lithium-ion secondary battery[J]. Electrochemistry, 1998, 03:54-60.)
    马铁. 炭/石墨复合材料作为锂离子电池负极材料研究[D]. 天津大学, 2006.
    郭炳坤, 等. 锂离子电池[M]. 长沙:中南大学出版社, 2001:188-210.
    Wang Y X, Chou S L, Liu H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57:202-208.
    Tang K, Fu L, White RJ, et al. Hollow carbon nanospheres with superior rate capability for sodium-ion batteries[J]. Adv Energy Mater, 2012, 2:873-877.
    Tsai P, Chung S C, Lin S, et al. Ab initio study of sodium intercalation into disordered carbon[J]. Journal of Materials Chemistry A, 2015, 3(18):9763-9768.
    郑洪河, 等. 锂离子电池电解质[M]. 化学工业出版社, 2006:116-120.
    Naji A, Ghanbaja J, Willmann P, et al. New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries[J]. Electrochimica acta, 2000, 45(12):1893-1899.
    孙雪梅, 高立军. 碳包覆碳酸钴锂离子电池负极材料的制备及电化学性能[J]. 物理化学学报, 2015, 08:1521-1526. (SUN Xue-mei, GAO Li-jun. Preparation and electrochemical properties of carbon-coated CoCO3 as an anode material for lithium ion batteries[J]. Acta Physico-Chimica Sinica, 2015, 08:1521-1526.)
    何则强, 刘文萍, 熊利芝, 等. 锂离子电池用SnO2-聚苯胺复合负极材料的制备与表征[J]. 无机化学学报, 2007, 05:813-816. (HE Ze-qiang, LIU Wen-ping, XIONG Li-zhi, et al. Synthesis and characterization of SnO2-polyaniline composite as anode for lithium ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2007, 05:813-816.)
    Ni J, Huang Y, Gao L. A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. Journal of Power Sources, 2013, 223:306-311.
    Yang S, Song H, Chen X. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries[J]. Electrochemistry communications, 2006, 8(1):137-142.
    Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12):11004-11015.
  • 加载中
图(1)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  142
  • PDF下载量:  645
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 录用日期:  2017-06-28
  • 修回日期:  2017-05-29
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回