留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单壁碳纳米管作支撑的杂化金纳米催化剂比TiO2和炭黑具有更优氧化芳香醇的性能

Anne E Shanahan Mary McNamara James A Sullivan Hugh J Byrne

Anne E Shanahan, Mary McNamara, James A Sullivan, Hugh J Byrne. 单壁碳纳米管作支撑的杂化金纳米催化剂比TiO2和炭黑具有更优氧化芳香醇的性能. 新型炭材料, 2017, 32(3): 242-251. doi: 10.1016/S1872-5805(17)60121-5
引用本文: Anne E Shanahan, Mary McNamara, James A Sullivan, Hugh J Byrne. 单壁碳纳米管作支撑的杂化金纳米催化剂比TiO2和炭黑具有更优氧化芳香醇的性能. 新型炭材料, 2017, 32(3): 242-251. doi: 10.1016/S1872-5805(17)60121-5
Anne E Shanahan, Mary McNamara, James A Sullivan, Hugh J Byrne. An insight into the superior performance of a gold nanocatalyst on single wall carbon nanotubes to that on titanium dioxide and amorphous carbon for the green aerobic oxidation of aromatic alcohols. New Carbon Mater., 2017, 32(3): 242-251. doi: 10.1016/S1872-5805(17)60121-5
Citation: Anne E Shanahan, Mary McNamara, James A Sullivan, Hugh J Byrne. An insight into the superior performance of a gold nanocatalyst on single wall carbon nanotubes to that on titanium dioxide and amorphous carbon for the green aerobic oxidation of aromatic alcohols. New Carbon Mater., 2017, 32(3): 242-251. doi: 10.1016/S1872-5805(17)60121-5

单壁碳纳米管作支撑的杂化金纳米催化剂比TiO2和炭黑具有更优氧化芳香醇的性能

doi: 10.1016/S1872-5805(17)60121-5
详细信息
    通讯作者:

    Anne E Shanahan.E-mail:ashanahan@isdh.in.gov

  • 中图分类号: TB33

An insight into the superior performance of a gold nanocatalyst on single wall carbon nanotubes to that on titanium dioxide and amorphous carbon for the green aerobic oxidation of aromatic alcohols

  • 摘要: 采用原位还原技术制备出以单壁碳纳米管、炭黑(P90)和TiO2为支撑的3种金纳米复合材料,并通过多种表征手段来探讨物理性能。再将他们作为1-苯基乙醇、2-苯基乙醇和苯甲醇的绿色需氧氧化杂化催化剂来测试稳定性。在所有反应中,与P90和TiO2相比,以单壁碳纳米管作支撑的金纳米杂化催化剂呈现出最优的反应效率和特异性。这些金纳米杂化催化剂经多次反应循环后反应活性衰减很小,从而能被重复使用。同时探讨了金纳米杂化催化剂活性高的原因,包括颗粒形貌、尺寸和支撑体性能。可以推断,基底上功能团迁移的位置、支撑材料的性质和活性金纳米颗粒相的颗粒尺寸分布均有助于使这些催化剂在反应中显示出高的选择性。
  • Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. Journal of Catalysis, 1989, 115(2):301-309.
    Biella S, Prati L, Rossi M. Selective oxidation of D-glucose on gold catalyst[J]. Journal of Catalysis, 2002, 206(2):242-247.
    Li F, Zhang Q, Wang Y. Size dependence in solvent free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles[J]. Applied Catalysis A:General, 2008(1-2) 334:217-226.
    Porta F, Prati L. Selective oxidation of glycerol to sodium glycerate with gold on carbon catalyst:an insight in to reaction selectivity[J]. Journal of Catalysis, 2004, (224):397-403.
    Hoelderich W F, Kollmer F. Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system[J]. Pure Appl Chem, 2000, 72(7):1273-1287.
    Stewart R, Banoo F. Chromic acid oxidation of aromatic alcohols[J]. Canadian Journal of Chemistry, 1969, 47(17):3207-3212.
    Lee DG, Shaabani A. Potassium permanganate oxidation of organic compounds[J]. Synthetic Communications, 2005, 35(4):571-580.
    Konwar D, Goghi Pranjol. Transition metal and organic solvent free:a highly efficient anaerobic process for selective oxidation of alcohols to aldehydes and ketones in water[J]. Org Biomol Chem, 2005, 3(19):3473-3475.
    Rodrigues E G, Pereira M F R, Delgado J J. Enhancement of the selectivity of dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes[J]. Cat Comm, 2011, 16(1):64-69.
    Zhou C H, Beltramini J N, Fan Y X. Chemoselective catalytic oxidation of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem Soc Rev, 2008, 37(3):527-549.
    Shanahan A E, Sullivan J A, McNamara M, et al. Preparation and characterization of a composite of gold nanoparticles and single-walled carbon nanotubes and its potential for heterogeneous catalysis[J]. New Carbon Materials, 2011, 26(5):347-355.
    Shi Z, Lian Y, Zhou X, et al. Mass-production of single-wall carbon nanotubes by arc discharge method[J]. Carbon, 1999, 37(9):1449-1453.
    http://www.sigmaaldrich.com/catalog/product/aldrich/519308.
    Mallick K, Witcomb M J, Scurrell M S. Supported gold catalysts prepared by in situ reduction technique:preparation, characterisation and catalytic activity measurements[J]. Applied Catalysis A:General, 2004, 259(2):163-168.
    Philip D. Synthesis and spectroscopic characterization of gold nanoparticles[J]. Spectrochimica Acta Part A, 2008, 71(1):80-85.
    Hu X G, Wang T, Qu X H, et al. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticles composite materials[J]. J Phys Chem B, 2006, 110(2):853-857.
    Haruta M. Size and support dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1):153-166.
    Cai W, Hofmeister H, Rainer T. Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica[J]. Physica E:Low dimensional Systems and Nanostructures, 2001, 11(4):339-344.
    Itoh T, Uwada T, Asahi T. Analysis of localised surface plasmon resonance by elastic light scattering spectroscopy of individual Au nanoparticles for surface enhanced Raman scattering[J]. Canadian Journal of Analytical Sciences and Spectroscopy, 2007, 52(3):130-141.
    Choi H C, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal ions on the side walls of carbon nanotubes[J]. J Am Chem Soc, 2002, 124:9058-9059.
    Memming R. Photoinduced charge transfer processes at semiconductor electrodes and particles[J]. Top Curr Chem, 1994, 169:105-181.
    Strobel R, Garche J, Moseley P T, et al. Hydrogen storage by carbon materials[J]. Journal of Power Sources, 2006, 159(2):781-801.
    Abad A, Almela A, Corma A, et al. Efficient chemoselective alcohol oxidation using oxygen as oxidant:Superior performance of gold over palladium catalysts[J]. Tetrahedron, 2006, 62:6666-6672.
    Green J M. Anal Chem. A practical guide to analytical method validation[Z]. 1996, 68(9):305-309.
    Kim S, Bae S W, Lee J S. Recyclable gold nanoparticles aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions[J]. Tetrahedron, 2009, 65:1461-1466.
    Li Q, Wu G, Ma Y, et al. Grafting modification of carbon black by trapping macroradicals formed by sonochemical degradation[J]. Carbon, 2007, 45(12):2411-2416.
    Saraev V V, Kraikivskii P B, Matveev D A. EPR study of the oxidation reaction of nickel(0) phosphine complexes with Lewis and Bronstead acids[J]. Inorganica Chimica Acta, 2006, 359(7):2314-2320.
    Haruta M, Date M. Advances in the catalysis of Au nanoparticles[J]. Applied Catalysis A:General, (2001), 222(1-2):427-437.
    Haruta M. Size and support dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1):153-166.
    Trapp W B. United States Patent Office[P]. 1956, 2, 700, 654.
    Young D C. United States Patent Office[P]. 1953, 2, 649, 462.
    Berger R J, Aghaei P. Reaction kinetics investigation of the selective oxidation of aqueous ethanol solutions with air over a Au/TiO2 catalyst[J]. Applied Catalysis B:Environmental, 2013, 132-133:195-203.
    Dapurkar S E, Shervani Z, Yokoyama T, et al. Supported gold nanoparticles catalysts for solvent-free selective oxidation of benzylic compounds into ketones at 1 atm O2[J]. Catal Lett, 2009, 130:42-47.
    Zheng N, Stucky GD. Promoting gold nanocatalysts in solvent free selective oxidation of alcohols[J]. Chem Comm, 2007, 37:3862-3864.
    Enache D I, Edwards J K, Hutchings G J, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2[J]. Science, 2006, 311:362-365.
    Velusamy S, Srinivasan A, Punniymurthy T. Copper (Ⅱ) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen[J]. Tetrahedron Letters, 2006, 47(6):923-926.
    Perez-Casas S, Moreno-Esparza R, Costas Met al. Effect of steric hindrance and π electrons on alcohol self association[J]. J Chem Soc Faraday Trans, 1991, 87(11):1745-1750.
    Anaikov V P, Szilagyi R, Morokuma, et al. Can steric effects induce the mechanism switch in the rhodium-catayzed imine boration reaction? A density functional and ONIOM study[J]. Organometallics, 2005, 24(8):1938-1946.
    March J. Advanced Organic Chemistry:Reactions, Mechanisms and Structure (1992) 4th Ed[C], John Wiley and Sons, NY, USA.
    http://www.organic-chemistry.org/namedreactions/jones-oxidation.shtm.
    http://www.masterorganicchemistry.com/2011/09/09/reagent-friday-pcc-pyridinium-chlorochromate.
  • 加载中
图(1)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  70
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-03
  • 录用日期:  2017-06-28
  • 修回日期:  2017-05-18
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回