留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaF-Si-C-RGO杂化材料的制备及电化学性能

李肖 宋燕 田晓冬 王凯 郭全贵 刘朗 陈成猛

李肖, 宋燕, 田晓冬, 王凯, 郭全贵, 刘朗, 陈成猛. NaF-Si-C-RGO杂化材料的制备及电化学性能. 新型炭材料, 2017, 32(4): 304-310.
引用本文: 李肖, 宋燕, 田晓冬, 王凯, 郭全贵, 刘朗, 陈成猛. NaF-Si-C-RGO杂化材料的制备及电化学性能. 新型炭材料, 2017, 32(4): 304-310.
LI Xiao, SONG Yan, TIAN Xiao-dong, WANG Kai, GUO Quan-gui, LIU Lang, CHEN Cheng-meng. Preparation and electrochemical properties of NaF-Si-C-RGO hybrids. New Carbon Mater., 2017, 32(4): 304-310.
Citation: LI Xiao, SONG Yan, TIAN Xiao-dong, WANG Kai, GUO Quan-gui, LIU Lang, CHEN Cheng-meng. Preparation and electrochemical properties of NaF-Si-C-RGO hybrids. New Carbon Mater., 2017, 32(4): 304-310.

NaF-Si-C-RGO杂化材料的制备及电化学性能

基金项目: 山西省基金(2012011219-3);中国科学院山西煤炭化学研究所杰出青-人才项目.
详细信息
    作者简介:

    李肖,博士研究生,E-mail:lx502118635@163.com

    通讯作者:

    宋燕,研究员,E-mail:yansong1026@126.com

  • 中图分类号: TQ127.1+1

Preparation and electrochemical properties of NaF-Si-C-RGO hybrids

Funds: Natural Science Foundation of Shanxi Province (2012011219-3);Outstanding Young Talent Fund of Institute of Coal chemistry,Chinese Academy of Sciences.
  • 摘要: 采用NaF溶液为添加剂,热固性酚醛树脂和还原氧化石墨烯(RGO)为碳源,制备了NaF-Si-C-RGO杂化材料。采用扫描电子显微镜、透射电子显微镜、热重分析仪、X射线衍射仪和拉曼分析仪等对其进行表征,并用作锂离子电池负极材料进行了相关电化学性能测试。NaF-Si-C-RGO杂化材料的循环稳定性和容量保持率均高于NaF-Si-RGO和Si-C-RGO杂化材料。因为硅纳米颗粒表面的无定形炭包覆层可以抑制SEI膜的不断形成;NaF中的Na+可以插入到氧化石墨烯片层中,不仅可以缓解氧化石墨烯片层的堆垛现象,还利于Si纳米颗粒在石墨烯片层中的分散,使更多的活性物发挥作用;F-的存在,一定程度抑制了电解液的分解,减少了HF的生成,这有利于维持电极结构的完整,从而保证了电极良好的循环稳定性。
  • 张瑛洁,刘洪兵. 锂离子电池硅-碳复合负极材料的研究进展[J]. 硅酸盐通报. 2015, 34: 989-994. (Zhang Ying-jie, Liu Hong-bin. Research progress on Si/C composite anode materials for lithium-ion battery[J]. Bulletin of the chinese ceramic society, 2015, 34: 989-994.
    Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211.
    Chen S, Bao P, Huang X, et al. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance[J]. Nano Res, 2013, 7(1): 85-94.
    Guzman RC, Yang J, Cheng M MC, et al. Effects of graphene and carbon coating modifications on electrochemical performance of silicon nanoparticle/graphene composite anode[J]. J Power Sources, 2014, 246: 335-345.
    Fu Y, Manthiram A. Silicon nanoparticles supported on graphitic carbon paper as a hybrid anode for Li-ion batteries[J]. Nano Energy, 2013, 2(6): 1107-1112.
    Choi S H, Jung D S, Choi J W, et al. Superior lithium-ion storage properties of Si-based composite powders with unique Si@carbon@void@graphene configuration[J]. Chem Eur J, 2015, 21(5): 2076-2082.
    Zhou X, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries[J]. Chem Commun, 2012, 48(16): 2198-2200.
    Li N, Jin S, Liao Q, et al. Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes[J]. Nano Energy, 2014, 5: 105-115.
    Sun C, Deng Y, Wan L, et al. Graphene oxide-Immobilized NH2-yerminated dilicon nanoparticles by vross-linked interactions for highly dtable dilicon negative rlectrodes[J]. ACS Appl Mater Interfaces, 2014, 6(14): 11277-11285.
    Xu C, Lindgren F, Philippe B, et al. Improved performance of the dilicon snode for li-ion natteries: Understanding the durface modification mechanism of gluoroethylene carbonate as an effective electrolyte additive[J]. Chem Mater, 2015, 27(7): 2591-2599.
    Fang C, Deng Y, Xie Y, et al. Improving the electrochemical performance of Si nanoparticle anode material by synergistic strategies of polydopamine and graphene oxide coatings[J]. J Phys Chem C, 2015, 119(4): 1720-1728.
    Li H, Lu C, Zhang B. A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance[J]. Electrochimi Acta, 2014, 120: 96-101.
    Liu W, Shadike Z, Liu Z C, et al. Enhanced electrochemical activity of rechargeable carbon fluorides-sodium battery with catalysts[J]. Carbon, 2015, 93: 523-532.
    HongJun Y, Wei Z, HaoDong L, et al. Synthesis and characterization of fluorinated carbon nanotubes for lithium primary batteries with high power density[J]. Nanotechnology, 2013, 24(42): 424003.
    Schroder K, Alvarado J, Yersak TA, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chem Mater, 2015, 27(16): 5531-5542.
    Chen C, Yang Q-H, Yang Y, et al. Self-assembled free-standing graphite oxide membrane[J]. Adv Mater, 2009, 21(29): 3007-3011.
    Meier C, Lüttjohann S, Kravets VG, et al. Raman properties of silicon nanoparticles[J]. Physica E, 2006, 32(1-2): 155-158.
    Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angew Chem Int Ed, 2008, 47(9): 1645-1649.
    Yang D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152.
    Yi R, Zai J, Dai F, et al. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J]. Nano Energy, 2014, 6: 211-218.
    Yang LY, Li HZ, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Sci Rep, 2015, 5.
    Wan J, Gu F, Bao W, et al. Sodium-ion intercalated transparent conductors with printed reduced graphene oxide networks[J]. Nano Lett, 2015, 15(6): 3763-3769.
    Brisson PY, Darmstadt H, Fafard M, et al. X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells[J]. Carbon, 2006, 44(8): 1438-1447.
  • 加载中
图(1)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  185
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 录用日期:  2017-08-31
  • 修回日期:  2017-08-02
  • 刊出日期:  2017-08-28

目录

    /

    返回文章
    返回