留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂电负极用SiO2@碳-石墨烯杂化材料的制备

尹令红 吴明铂 李彦鹏 吴桂良 王元坤 王阳

尹令红, 吴明铂, 李彦鹏, 吴桂良, 王元坤, 王阳. 锂电负极用SiO2@碳-石墨烯杂化材料的制备. 新型炭材料, 2017, 32(4): 311-318. doi: 10.1016/S1872-5805(17)60124-0
引用本文: 尹令红, 吴明铂, 李彦鹏, 吴桂良, 王元坤, 王阳. 锂电负极用SiO2@碳-石墨烯杂化材料的制备. 新型炭材料, 2017, 32(4): 311-318. doi: 10.1016/S1872-5805(17)60124-0
YIN Ling-hong, WU Ming-bo, LI Yan-peng, WU Gui-liang, WANG Yuan-kun, WANG Yang. Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries. New Carbon Mater., 2017, 32(4): 311-318. doi: 10.1016/S1872-5805(17)60124-0
Citation: YIN Ling-hong, WU Ming-bo, LI Yan-peng, WU Gui-liang, WANG Yuan-kun, WANG Yang. Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries. New Carbon Mater., 2017, 32(4): 311-318. doi: 10.1016/S1872-5805(17)60124-0

锂电负极用SiO2@碳-石墨烯杂化材料的制备

doi: 10.1016/S1872-5805(17)60124-0
基金项目: 国家自然科学基金(U1662113,51572296,51372277);中央高校基本科研业务费专项资金(15CX08005A).
详细信息
    作者简介:

    尹令红,硕士研究生,E-mail:linghong1990@163.com

    通讯作者:

    吴明铂,教授,E-mail:wumb@upc.edu.cn

  • 中图分类号: TQ127.1+1

Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries

Funds: National Natural Science Foundation of China (U1662113,51572296,51372277);Fundamental Research Fund for the Central Universities (15CX08005A).
  • 摘要: 采用超声辅助的水热法及后续热处理法,将硅溶胶、蔗糖、氧化石墨烯自组装制备出具有优异电化学性能的SiO2@碳-石墨烯(SiO2@C-G)杂化物。结果表明:SiO2与蔗糖的质量比是影响SiO2@C-G杂化物电化学性能的重要因素。15-SiO2@C-G杂化物(SiO2与蔗糖的质量比为0.15),表现出较好的可逆储锂性能。电流密度为100 mA·g-1,首次放电比容量为906 mAh·g-1,循环216次后,该电极材料的放电比容量可保持在542 mAh·g-1。优异的循环稳定性及可逆容量归因于杂化物良好的导电性,SiO2颗粒较小的尺寸及均匀分布三者之间的协同效应。该文提出的方法有望为导电性差的金属氧化物基电极材料提供一种简单环保的制备策略。
  • Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
    Liu S H, Wang Z Y, Yu C, et al. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life[J]. Advanced Materials, 2013, 25(25): 3462-3467.
    Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials, 2009, 21(25-26): 2664-2680.
    Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): 28-62.
    Li M Q, Yu Y, Li J, et al. Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability[J]. Journal of Materials Chemistry A, 2015, 3(4): 1476-1482.
    Chang W S, Park C M, Kim J H, et al. Quartz (SiO2): a new energy storage anode material for li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5): 6895-6899.
    Sun Q, Zhang B, Fu Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries[J]. Applied Surface Science, 2008, 254(13): 3774-3779.
    Kim Y K, Moon J W, Lee J G, et al. Porous carbon-coated silica macroparticles as anode materials for lithium ion batteries: Effect of boric acid[J]. Journal of Power Sources, 2014, 272: 689-695.
    Lv P P, Zhao H L, Gao C H, et al. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries[J]. Electrochimica Acta, 2015, 152: 345-351.
    Lv P P, Zhao H L, Wang J, et al. Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 291-294.
    Yao Y, Zhang J J, Xue L. G, et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(23): 10240-10243.
    Guo B K, Shu J, Wang Z W, et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2008, 10(12): 1876-1878.
    Yang X Q, Huang H, Li Z H, et al. Preparation and lithium-storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure[J]. Carbon, 2014, 77: 275-280.
    Luo W, Bommier C, Jian Z L, et al. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2626-2631.
    Li Z T, Wu G L, Liu D, et al. Graphene enhanced carbon-coated tin dioxide nanoparticles for lithium-ion secondary batteries[J]. Journal of Materials Chemistry A, 2014, 2(20): 7471-7477.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
    Ren Y R, Wei H M, Huang X B, et al. A facile synthesis of SiO2@C@graphene composites as anode material for lithium ion batteries[J]. International of Journal of Electrochemical Science, 2014, 9(12): 7784-7794.
    Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1291.
    Luo D, Zhang G X, Liu J, et al. Evaluation criteria for reduced graphene oxide[J]. Journal of Physical Chemistry C, 2011, 115(23): 11327-11335.
    Sun J, Teng X Y, Yang J X, et al. One pot synthesis of a highly water-dispersible hybrid glucose carbides and reduced graphene oxide material with superior electrical capacitance[J]. Journal of Materials Science, 2013, 48(23): 8277-8286.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(12010): 228-240.
    Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-877.
    Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
    Wu G L, Wu M B, Wang D, et al. A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries[J]. Applied Surface Science, 2014, 315: 400-406.
    Wu Y P, Jiang C Y, Wan C R, et al. Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries[J]. Electrochemistry Communications, 2000, 2(4): 272-275.
    Wu G L, Li Z T, Wu W T, et al. Effects of calcination on the preparation of carbon-coated SnO2/graphene as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2014, 615: 582-587.
    Gao B, Sinha S, Fleming L, et al. Alloy formation in nanostructured silicon[J]. Advanced Materials, 2001, 13(11): 816-819.
    Fei H L, Peng Z W, Li L, et al. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries[J]. Nano Research, 2014, 7(4): 502-510.
    Zhou G, Wang D W, Hou P X, et al. A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(34): 17942-17946.
    Do J S, Weng C H. Preparation and characterization of CoO used as anodic material of lithium battery[J]. Journal of Power Sources, 2005, 146(1-2): 482-486.
  • 加载中
图(1)
计量
  • 文章访问数:  496
  • HTML全文浏览量:  112
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 录用日期:  2017-08-31
  • 修回日期:  2017-08-10
  • 刊出日期:  2017-08-28

目录

    /

    返回文章
    返回