留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磺化石墨烯对树脂基炭刷载流磨损性能的影响

冯鹏洋 涂川俊 陈查坤 韦巩 顾志平

冯鹏洋, 涂川俊, 陈查坤, 韦巩, 顾志平. 磺化石墨烯对树脂基炭刷载流磨损性能的影响. 新型炭材料, 2017, 32(4): 352-357.
引用本文: 冯鹏洋, 涂川俊, 陈查坤, 韦巩, 顾志平. 磺化石墨烯对树脂基炭刷载流磨损性能的影响. 新型炭材料, 2017, 32(4): 352-357.
FENG Peng-yang, TU Chuan-jun, CHEN Zha-kun, WEI Gong, GU Zhi-ping. The effect of sulfonated graphene oxide on the current-carrying wear characteristics of a resin matrix carbon brush. New Carbon Mater., 2017, 32(4): 352-357.
Citation: FENG Peng-yang, TU Chuan-jun, CHEN Zha-kun, WEI Gong, GU Zhi-ping. The effect of sulfonated graphene oxide on the current-carrying wear characteristics of a resin matrix carbon brush. New Carbon Mater., 2017, 32(4): 352-357.

磺化石墨烯对树脂基炭刷载流磨损性能的影响

基金项目: 国家自然科学基金(51102089);湖南省自然科学基金(2016JJ2024).
详细信息
    作者简介:

    冯鹏洋,硕士研究生.E-mail:yefeng@hnu.edu.cn

    通讯作者:

    涂川俊,博士,高级实验师.E-mail:tcj122@aliyun.com

  • 中图分类号: TB332

The effect of sulfonated graphene oxide on the current-carrying wear characteristics of a resin matrix carbon brush

Funds: National Natural Foundation of China (51102089);Natural Science Foundation of Hunan Province (2016JJ2024).
  • 摘要: 以磺化石墨烯共混包覆的天然鳞片石墨粉为导电填料,改性酚醛树脂作为粘结剂,采用分步分散、热轧片、二次造粒等工艺制得新型树脂基炭刷材料。采用Z1E-QC8-110石材切割机测试其载流磨损性能,利用XRD、SEM、EDS、TEM等表征手段对磺化石墨烯改性前后的鳞片石墨粉及其炭刷制品的磨损面进行微观结构分析。结果表明,经磺化石墨烯改性的鳞片石墨粉呈现出"搭接桥联"状态,且其制成的炭刷材料的磨痕区域呈现"互联粘附"状态。在同为220 V的加载电压下,含磺化石墨烯的炭刷载流磨损率为2.06×10-7mg·N-1·m-1,约是未含磺化石墨烯炭刷的31.3%,其抗磨性明显优于后者。树脂基炭刷/铜的磨损机理主要是电侵蚀磨损、氧化磨损和粘着磨损的交互作用。
  • Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2008, 8(1): 36-41.
    Xu C, Yuan R, Wang X. Selective reduction of graphene oxide[J]. New Carbon Materials, 2014, 29(1): 61-66.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.
    Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties and applications[J]. Advanced Masterials, 2010, 22(35): 3906-3924.
    Satti A, Larpent P, Gun K Y. Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking[J]. Carbon, 2010, 48(12): 3376-3381.
    Verdejo R, Barroso-Bujans F, Rodriguez-Perez M A, et al. Functionalized graphene sheet filled silicone foam nanocomposites[J]. J Mater Chem, 2008, 18(19): 2221-2226.
    Konwer S, Boruah R, Dolui S. Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode[J]. Journal of Elec Materi, 2011, 40(11): 2248-2255.
    Wang Y, Shi Z X, Fang J H, et al. Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method[J]. Carbon, 2011, 49(4): 1199-1207.
    蒋永华, 栗建民, 郝建东. 一种超强水溶性功能化石墨烯/氧化石墨烯及其制备方法[P]. 中国专利: CN103539105A, 2014-01-29.
    Hu Z L, Chen Z H, Xia J T, et al. Effect of PV factor on the wear of carbon brushes for micromotors[J]. Wear, 2008, 265(3): 336-340.
    Si Y C, Samulski E T. Synthesis of water soluble graphene[J]. Nano letters, 2008, 8(6): 1679-1682.
    Ji J, Zhang G, Chen H, W et al. Sulfonated graphene as water-tolerant solid acid catalyst[J]. Chemical Science, 2011, 2(3): 484-487.
    Balaban A T, Randic M, Vukicevic D. Partition of π-electrons between faces of polyhedral carbon aggregates[J]. Journal of Mathematical Chemistry, 2008, 43(2): 773-779.
    Hagio T, Nakamizo M, Kobayashi K. Studies on X-ray diffraction and Raman spectra of B-doped natural graphite[J]. Carbon, 1989, 27(2): 259-263.
    Amsler M, Flores-Livas J A, Lehtovaara L, et al. Crystal structure of cold compressed graphite[J]. Physical review letters, 2012, 108(6): 1-4.
    Zhao G X, Jiang L, He Y D, et al. Sulfonated graphene for persistent aromatic pollutant management[J]. Advanced Masterials, 2011, 23(34): 3959-3963.
    Suganuma S, Nakajima K, Kitano M, et al. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups[J]. Journal of the American Chemical Society, 2008, 130(38): 12787-12793.
    Ding T, Chen G X, Bu J, et al. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph-catenary systems[J]. Wear, 2011, 271(9-10): 1629-1636.
    Xiong X Z, Tu C J, Chen D, et al. Arc erosion wear characteristics and mechanisms of pure carbon strip against copper under arcing conditions[J]. Tribology Letters, 2014, 53(1): 293-301.
    胡海军. 摩擦材料摩擦膜的研究[J]. 摩擦密封材料, 2002, 3: 37-39.
    Tu C J, Chen D, Chen Z H, et al. Improving the tribological behavior of graphite/Cu matrix self-lubricating composite contact strip by electroplating Zn on graphite[J]. Tribology Letters, 2008, 31(2): 91-98.
    Fakih B, Dienwiebel M. The structure of tribolayers at the commutator and brush interface: A case study of failed and non-failed DC motors[J]. Tribology International, 2015, 92: 21-28.
  • 加载中
图(1)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  163
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 录用日期:  2017-08-31
  • 修回日期:  2017-06-15
  • 刊出日期:  2017-08-28

目录

    /

    返回文章
    返回