WANG Xiao-ting, MA Hao, HE Xiao-jun, WANG Jing-xian, HAN Jiu-feng, WANG Yong. Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors. New Carbon Mater., 2017, 32(3): 213-220. doi: 10.1016/S1872-5805(17)60118-5
Citation: WANG Xiao-ting, MA Hao, HE Xiao-jun, WANG Jing-xian, HAN Jiu-feng, WANG Yong. Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors. New Carbon Mater., 2017, 32(3): 213-220. doi: 10.1016/S1872-5805(17)60118-5

Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors

doi: 10.1016/S1872-5805(17)60118-5
Funds:  National Natural Science Foundation of China (51272004,U1361110,U1508201);New Century Excellent Talents in University of the Education Ministry of China (NCET-13-0643);Provincial Innovative Group for Processing&Clean Utilization of Coal Resource.
  • Received Date: 2017-03-28
  • Accepted Date: 2017-06-28
  • Rev Recd Date: 2017-06-06
  • Publish Date: 2017-06-28
  • Interconnected mesoporous carbon sheets (IMCSs) for use in supercapacitors were fabricated from coal tar pitch using a metal-organic framework (MOF-5) template method combined with KOH activation.The samples were characterized by transmission electron microscopy,N2 adsorption,X-ray diffraction and X-ray photoelectron spectroscopy.Results show that the specific surface area of IMCSs is in the range of 860 to 1 046 m2·g-1.The IMCS prepared under the optimal conditions presents a high specific capacitance of 242 F·g-1 at 0.05 A·g-1 in a 6 M KOH aqueous electrolyte.It also exhibits an excellent rate capability with a 80.2% capacitance retention rate as the current density increases from 0.05 to 20 A·g-1,and a cycle stability with a 94.2% capacitance retention rate after 10 000 charge-discharge cycles.The good electrochemical performance is ascribed to small hierarchical pores for ion fast transport,abundant accessible micropores for ion storage and interconnected structure for high electron conductivity.This work provides a simple method for the synthesis of IMCSs from cheap polycyclic aromatic hydrocarbons,including coal tar pitch and petroleum pitch,for use in high-performance supercapacitors.
  • loading
  • Liu Y Z, Chen C M, Li Y F, et al. Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage[J]. Journal of Materials Chemistry A, 2014, 2(16):5730-5737.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Mater, 2008, 7:845-854.
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chem Soc Rev, 2012, 41:797-828.
    Zheng D F, Jia M Q, Xu B, et al. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors[J]. New Carbon Materials, 2013, 28:151-155.
    Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Adv Mater, 2014, 26:2219-2251.
    Yan X L, Li X J, Yan Z F, et al. Porous carbons prepared by direct carbonization of MOFs for supercapacitors[J]. Appl Surf Sci, 2014, 308:306-310.
    Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. J Mater Chem, 2012, 22:23710-23725.
    He X J, Li X J, Wang X T, et al. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Materials, 2014, 29:493-502.
    Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew Chem Int Ed, 2008, 47:373-376.
    Xia Y D, Yang Z X, Mokaya R. Templated nanoscale porous carbons[J]. Nanoscale, 2010, 2:639-659.
    Jin J, Tanaka S, Egashira Y, et al. KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties[J]. Carbon, 2010, 48:1985-1989.
    Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:276-279.
    Chen B, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291:1021-1023.
    Pan L, Parker B, Huang X Y, et al. Zn(tbip) (H2tbip)=5-tert-Butyl Isophthalic Acid):A highly stable guest-free microporous metal organic framework with unique gas separation capability[J]. J Am Chem Soc, 2006, 128:4180-4181.
    Zou R Q, Sakurai H, Han S, et al. Probing the lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer[Cu(5-methylisophthalate)] [J]. J Am Chem Soc, 2007, 129:8402-8403.
    Meng F, Fang Z G, Li Z X, et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. J Mater Chem A, 2013, 1:7235-7241.
    Amali A J, Sun J K, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chem Commun, 2014, 50:1519-1522.
    Zhang Y D, Lin B P, Sun Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Adv, 2015, 5:58100-58106.
    Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. J Am Chem Soc, 2008, 130:5390-5391.
    Liu B, Shioyama H, Jiang H L, et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48:456-463.
    Gonzalez J, Devi R N, Tunstall D P, et al. Deuterium NMR studies of framework and guest mobility in the metal-organic framework compound MOF-5, Zn4O(O2CC6H4CO2)3[J]. Micropor Mesopor Mater, 2005, 84:97-104.
    Hafizovic J, Bjørgen M, Olsbye U, et al. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities[J]. J Am Chem Soc, 2007, 129:3612-3620.
    Hu J, Wang H L, Gao Q M, et al. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors[J]. Carbon, 2010, 48:3599-3606.
    Yu M X, Zhang L, He X J, et al. 3D interconnected porous carbons from MOF-5 for supercapacitors[J]. Mater Lett, 2016, 172:81-84.
    Huang L, Wang H, Chen J, et al. Synthesis, morphology control, and properties of porous metal-organic coordination polymers[J]. Micropor Mesopor Mater, 2003, 58:105-114.
    He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A, 2014, 2:19633-19640.
    Wang H, Gao Q, Hu J. High hydrogen storage capacity of porous carbons prepared by using activated carbon[J]. J Am Chem Soc, 2009, 131:7016-7022.
    Li M J, Liu C M, Cao H B, et al. KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors[J]. J Mater Chem A, 2014, 2:14844-14851.
    Comotti A, Bracco S, Sozzani P, et al. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer[J]. J Am Chem Soc, 2008, 130:13664-13672.
    Muniandy L, Adam F, Mohamed A R, et al. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activationwith NaOH and KOH[J]. Micropor Mesopor Mater, 2014, 197:316-323.
    Lin Z Y, Waller G, Liu Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Adv Energy Mater, 2012, 2:884-888.
    Horikawa T, Sakao N, Sekida T, et al. Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption[J]. Carbon, 2012, 50:1833-1842.
    Biniak S, Szymanski G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997, 35:1799-1810.
    László K, Tombácz E, Josepovits K. Effect of activation on the surface chemistry of carbons from polymer precursors[J]. Carbon, 2001, 39:1217-1228.
    Yue Z R, Jiang W, Wang L, et al. Adsorption of precious metal ions onto electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37:1607-1618.
    Jiang L L, Sheng L Z, Long C L, et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors[J]. Adv Energy Mater, 2015, 5(15):1500771-1500779.
    Yan J, Wang Q, Lin C P, et al. Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances[J]. Adv Energy Mater, 2015, 4(13):1294-1305.
    He X J, Zhao N, Qiu J S, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A, 2013, 1:9440-9448.
    Cheng X Y, Chen C, Zhang Z J, et al. High performance porous carbon through hard-soft dual templates for supercapacitor electrodes[J]. J Mater Chem A, 2013, 1:7379-7383.
    Hao P, Zhao Z H, Tian J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6:12120-12129.
    Wang X T, Ma H, Zhang H B, et al. Interconnected mesoporous carbon sheet for supercapacitors from low-cost resources[J]. Mater Lett, 2015, 158:237-240.
    Moon G H, Shin Y, Choi D, et al. Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures[J]. Nanoscale, 2013, 5:6291-6296.
    Sánchez-González J, Stoeckli F, Centeno T A. The role of the electric conductivity of carbons in the electrochemical capacitor performance[J]. J Electroanal Chem, 2011, 657:176-180.
    Wang J, Shen L F, Ding B, et al. Fabrication of porous carbon spheres for high-performance electrochemical capacitors[J]. RSC Adv, 2014, 4:7538-7544.
    K tz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochim Acta, 2000, 45:2483-2498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(384) PDF Downloads(515) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return