Anne E Shanahan, Mary McNamara, James A Sullivan, Hugh J Byrne. An insight into the superior performance of a gold nanocatalyst on single wall carbon nanotubes to that on titanium dioxide and amorphous carbon for the green aerobic oxidation of aromatic alcohols. New Carbon Mater., 2017, 32(3): 242-251. doi: 10.1016/S1872-5805(17)60121-5
Citation: Anne E Shanahan, Mary McNamara, James A Sullivan, Hugh J Byrne. An insight into the superior performance of a gold nanocatalyst on single wall carbon nanotubes to that on titanium dioxide and amorphous carbon for the green aerobic oxidation of aromatic alcohols. New Carbon Mater., 2017, 32(3): 242-251. doi: 10.1016/S1872-5805(17)60121-5

An insight into the superior performance of a gold nanocatalyst on single wall carbon nanotubes to that on titanium dioxide and amorphous carbon for the green aerobic oxidation of aromatic alcohols

doi: 10.1016/S1872-5805(17)60121-5
  • Received Date: 2017-02-03
  • Accepted Date: 2017-06-28
  • Rev Recd Date: 2017-05-18
  • Publish Date: 2017-06-28
  • Gold nanocomposites based on three supports,single wall carbon nanotubes,carbon black and TiO2,were prepared using an in-situ reduction technique and characterized.They were tested for their suitability as heterogeneous catalysts in the green aerobic oxidation of 1-phenylethanol,2-phenylethanol and benzylalcohol of industrial importance.For all reactions,the use of single wall carbon nanotubes as supports resulted in superior reaction efficiency and specificity for aldehyde to that of TiO2 and carbon black.The gold nanocatalysts can be reused over several reaction cycles with a minimal degeneration in catalytic activity.The activity of the gold nanoparticle catalyst was related to the shape and size of the gold particles and the properties of the support.The selectivity was ascribed to the functional groups on the substrate,the properties of the supports and the particle size distributions of the gold nanoparticles.
  • loading
  • Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. Journal of Catalysis, 1989, 115(2):301-309.
    Biella S, Prati L, Rossi M. Selective oxidation of D-glucose on gold catalyst[J]. Journal of Catalysis, 2002, 206(2):242-247.
    Li F, Zhang Q, Wang Y. Size dependence in solvent free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles[J]. Applied Catalysis A:General, 2008(1-2) 334:217-226.
    Porta F, Prati L. Selective oxidation of glycerol to sodium glycerate with gold on carbon catalyst:an insight in to reaction selectivity[J]. Journal of Catalysis, 2004, (224):397-403.
    Hoelderich W F, Kollmer F. Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system[J]. Pure Appl Chem, 2000, 72(7):1273-1287.
    Stewart R, Banoo F. Chromic acid oxidation of aromatic alcohols[J]. Canadian Journal of Chemistry, 1969, 47(17):3207-3212.
    Lee DG, Shaabani A. Potassium permanganate oxidation of organic compounds[J]. Synthetic Communications, 2005, 35(4):571-580.
    Konwar D, Goghi Pranjol. Transition metal and organic solvent free:a highly efficient anaerobic process for selective oxidation of alcohols to aldehydes and ketones in water[J]. Org Biomol Chem, 2005, 3(19):3473-3475.
    Rodrigues E G, Pereira M F R, Delgado J J. Enhancement of the selectivity of dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes[J]. Cat Comm, 2011, 16(1):64-69.
    Zhou C H, Beltramini J N, Fan Y X. Chemoselective catalytic oxidation of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem Soc Rev, 2008, 37(3):527-549.
    Shanahan A E, Sullivan J A, McNamara M, et al. Preparation and characterization of a composite of gold nanoparticles and single-walled carbon nanotubes and its potential for heterogeneous catalysis[J]. New Carbon Materials, 2011, 26(5):347-355.
    Shi Z, Lian Y, Zhou X, et al. Mass-production of single-wall carbon nanotubes by arc discharge method[J]. Carbon, 1999, 37(9):1449-1453.
    http://www.sigmaaldrich.com/catalog/product/aldrich/519308.
    Mallick K, Witcomb M J, Scurrell M S. Supported gold catalysts prepared by in situ reduction technique:preparation, characterisation and catalytic activity measurements[J]. Applied Catalysis A:General, 2004, 259(2):163-168.
    Philip D. Synthesis and spectroscopic characterization of gold nanoparticles[J]. Spectrochimica Acta Part A, 2008, 71(1):80-85.
    Hu X G, Wang T, Qu X H, et al. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticles composite materials[J]. J Phys Chem B, 2006, 110(2):853-857.
    Haruta M. Size and support dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1):153-166.
    Cai W, Hofmeister H, Rainer T. Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica[J]. Physica E:Low dimensional Systems and Nanostructures, 2001, 11(4):339-344.
    Itoh T, Uwada T, Asahi T. Analysis of localised surface plasmon resonance by elastic light scattering spectroscopy of individual Au nanoparticles for surface enhanced Raman scattering[J]. Canadian Journal of Analytical Sciences and Spectroscopy, 2007, 52(3):130-141.
    Choi H C, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal ions on the side walls of carbon nanotubes[J]. J Am Chem Soc, 2002, 124:9058-9059.
    Memming R. Photoinduced charge transfer processes at semiconductor electrodes and particles[J]. Top Curr Chem, 1994, 169:105-181.
    Strobel R, Garche J, Moseley P T, et al. Hydrogen storage by carbon materials[J]. Journal of Power Sources, 2006, 159(2):781-801.
    Abad A, Almela A, Corma A, et al. Efficient chemoselective alcohol oxidation using oxygen as oxidant:Superior performance of gold over palladium catalysts[J]. Tetrahedron, 2006, 62:6666-6672.
    Green J M. Anal Chem. A practical guide to analytical method validation[Z]. 1996, 68(9):305-309.
    Kim S, Bae S W, Lee J S. Recyclable gold nanoparticles aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions[J]. Tetrahedron, 2009, 65:1461-1466.
    Li Q, Wu G, Ma Y, et al. Grafting modification of carbon black by trapping macroradicals formed by sonochemical degradation[J]. Carbon, 2007, 45(12):2411-2416.
    Saraev V V, Kraikivskii P B, Matveev D A. EPR study of the oxidation reaction of nickel(0) phosphine complexes with Lewis and Bronstead acids[J]. Inorganica Chimica Acta, 2006, 359(7):2314-2320.
    Haruta M, Date M. Advances in the catalysis of Au nanoparticles[J]. Applied Catalysis A:General, (2001), 222(1-2):427-437.
    Haruta M. Size and support dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1):153-166.
    Trapp W B. United States Patent Office[P]. 1956, 2, 700, 654.
    Young D C. United States Patent Office[P]. 1953, 2, 649, 462.
    Berger R J, Aghaei P. Reaction kinetics investigation of the selective oxidation of aqueous ethanol solutions with air over a Au/TiO2 catalyst[J]. Applied Catalysis B:Environmental, 2013, 132-133:195-203.
    Dapurkar S E, Shervani Z, Yokoyama T, et al. Supported gold nanoparticles catalysts for solvent-free selective oxidation of benzylic compounds into ketones at 1 atm O2[J]. Catal Lett, 2009, 130:42-47.
    Zheng N, Stucky GD. Promoting gold nanocatalysts in solvent free selective oxidation of alcohols[J]. Chem Comm, 2007, 37:3862-3864.
    Enache D I, Edwards J K, Hutchings G J, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2[J]. Science, 2006, 311:362-365.
    Velusamy S, Srinivasan A, Punniymurthy T. Copper (Ⅱ) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen[J]. Tetrahedron Letters, 2006, 47(6):923-926.
    Perez-Casas S, Moreno-Esparza R, Costas Met al. Effect of steric hindrance and π electrons on alcohol self association[J]. J Chem Soc Faraday Trans, 1991, 87(11):1745-1750.
    Anaikov V P, Szilagyi R, Morokuma, et al. Can steric effects induce the mechanism switch in the rhodium-catayzed imine boration reaction? A density functional and ONIOM study[J]. Organometallics, 2005, 24(8):1938-1946.
    March J. Advanced Organic Chemistry:Reactions, Mechanisms and Structure (1992) 4th Ed[C], John Wiley and Sons, NY, USA.
    http://www.organic-chemistry.org/namedreactions/jones-oxidation.shtm.
    http://www.masterorganicchemistry.com/2011/09/09/reagent-friday-pcc-pyridinium-chlorochromate.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(435) PDF Downloads(329) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return