NIU Shu-zhang, WU Si-da, LU Wei, YANG Quan-hong, KANG Fei-yu. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries. New Carbon Mater., 2017, 32(4): 289-296. doi: 10.1016/S1872-5805(17)60123-9
Citation: NIU Shu-zhang, WU Si-da, LU Wei, YANG Quan-hong, KANG Fei-yu. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries. New Carbon Mater., 2017, 32(4): 289-296. doi: 10.1016/S1872-5805(17)60123-9

A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries

doi: 10.1016/S1872-5805(17)60123-9
Funds:  National Key Basic Research Program of China (2014CB932400);National Natural Science Foundation of China (U1401243);Shenzhen Basic Research Project (JCYJ20150529164918734,JCYJ20150331151358140,JCYJ20150331151358136).
  • Received Date: 2017-05-26
  • Accepted Date: 2017-08-31
  • Rev Recd Date: 2017-07-30
  • Publish Date: 2017-08-28
  • Porous carbon materials can increase the conductivity of sulfur and restrain the shuttling of polysulfides in the electrolyte. A hierarchical microporous-mesoporous carbon (HMMC) with a large surface area and pore volume was prepared by the simple one-step carbonization of a mixture of magnesium gluconate (MG) and phenolic resin. The MG was transformed into nanosize magnesium oxide that acted as a hard template during carbonization to create mesopores. The HMMC has a high surface area (~1 560 m2·g-1) and large pore volume (~2.6 cm3·g-1), which provides abundant space for sulfur loading and accommodates volume changes during charge/discharge. The interconnected pore structure and carbon framework ensure fast electron and Li ion transfer. As the cathode of a Li-S battery the sulfur-loaded HMMC has a high discharge capacity of 939 mAh·g-1 at 0.3 C and a reversible capacity of 731 mAh·g-1 after 150 cycles with only a 0.15% capacity fade per cycle. Even at a high rate of 2 C, it still delivers a high discharge capacity of 626 mAh·g-1, showing an excellent rate performance.
  • loading
  • Manthiram A, Chung S H, Zu C. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006.
    Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2016, 2: 76-106.
    Zhang Q, Cheng X B, Huang J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4): 241-264.
    Huang J Q, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and Prospects[J]. Energy Storage Materials, 2015, 1: 127-145.
    Li F F, Lu W, Niu S Z, et al. Preparation and electrochemical performance of a graphene-wrapped carbon/sulphur composite cathode[J]. New Carbon Materials, 2014, 29(4): 309-315.
    Yu M, Li R, Wu M, et al. Graphene materials for lithium-sulfur batteries[J]. Energy Storage Materials, 2015, 1: 51-73.
    Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials, 2016, 2: 107-138.
    Zhu L, Zhu W C, Cheng X B, et al. Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries[J]. Carbon, 2014, 75(8): 161-168.
    Niu S, Lv W, Zhang C, et al. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 295: 182-189.
    Xin S, Gu L, Zhao N-H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
    Werner J G, Johnson S S, Vijay V, et al. Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium-sulfur batteries[J]. Chemistry of Materials, 2015, 27(9): 3349-3357.
    Xu F, Tang Z, Huang S, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015, 6: 7221.
    Tang Z W, Xu F, Liang Y R, et al. Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel /sulfur cathode for lithium-sulfur batteries[J]. New Carbon Materials, 2015, 30(4): 319-326.
    Chen S, Sun B, Xie X, et al. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life[J]. Nano Energy, 2015, 16(0): 268-280.
    Liang C, Dudney N J, Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730.
    Gorka J, Zawislak A, Choma J, et al. KOH activation of mesoporous carbons obtained by soft-templating[J]. Carbon, 2008, 46(8): 1159-1161.
    Chen Xa, Xiao Z, Ning X, et al. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2014, 4(13): 1301988.
    Wang J, Wu Y, Shi Z, et al. Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for lithium-sulfur batteries[J]. Electrochimica Acta, 2014, 144: 307-314.
    Morishita T, Tsumura T, Toyoda M, et al. A review of the control of pore structure in MgO-templated nanoporous carbons[J]. Carbon, 2010, 48(10): 2690-2707.
    Morishige K, Tateishi N. Adsorption hysteresis in ink-bottle pore[J]. The Journal of Chemical Physics, 2003, 119(4): 2301-2306.
    Li Z, Wu D, Liang Y, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. Journal of the American Chemical Society, 2014, 136(13): 4805-4808.
    Wu D, Li Z, Zhong M, et al. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP[J]. Angewandte Chemie International Edition, 2014, 53(15): 3957-3960.
    Mai W, Sun B, Chen L, et al. Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres[J]. Journal of the American Chemical Society, 2015, 137(41): 13256-13259.
    Zhang C, Liu D-H, Lv W, et al. A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries[J]. Nanoscale, 2015, 7(13): 5592-5597.
    Xu G, Ding B, Nie P, et al. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 194-199.
    Niu S, Lv W, Zhang C, et al. A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(40): 20218-20224.
    Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525.
    Ding B, Yuan C, Shen L, et al. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2013, 1(4) : 1096-1101.
    Zu C, Manthiram A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2013, 3(8): 1008-1012.
    Zhang J, Lv W, Tao Y, et al. Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions[J]. Energy Storage Materials, 2015, 1: 112-118.
    Niu S, Lv W, Zhou G, et al. N and S co-doped porous carbon spheres prepared using l-cysteine as a dual functional agent for high-performance lithium-sulfur batteries[J]. Chemical Communications, 2015, 51(100): 17720-17723.
    Kolosnitsyn V S, Kuzmina E V, Karaseva E V, et al. A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy[J]. Journal of Power Sources, 2011, 196(3): 1478-1482.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(468) PDF Downloads(602) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return