YIN Ling-hong, WU Ming-bo, LI Yan-peng, WU Gui-liang, WANG Yuan-kun, WANG Yang. Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries. New Carbon Mater., 2017, 32(4): 311-318. doi: 10.1016/S1872-5805(17)60124-0
Citation: YIN Ling-hong, WU Ming-bo, LI Yan-peng, WU Gui-liang, WANG Yuan-kun, WANG Yang. Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries. New Carbon Mater., 2017, 32(4): 311-318. doi: 10.1016/S1872-5805(17)60124-0

Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries

doi: 10.1016/S1872-5805(17)60124-0
Funds:  National Natural Science Foundation of China (U1662113,51572296,51372277);Fundamental Research Fund for the Central Universities (15CX08005A).
  • Received Date: 2017-03-15
  • Accepted Date: 2017-08-31
  • Rev Recd Date: 2017-08-10
  • Publish Date: 2017-08-28
  • SiO2@carbon-graphene (SiO2@C-G) hybrids with excellent electrochemical performance were prepared by the self-assembly of colloidal silica, sucrose and graphene oxide followed by ultrasonic-assisted hydrothermal and heat treatments. The mass ratio of silica to sucrose is crucial to the electrochemical performance of the resulting hybrids. A hybrid with a mass ratio of silica to sucrose of 0.15 shows the best reversible lithium storage performance, delivering an initial discharge capacity of 906 mAh·g-1 and a capacity of 542 mAh·g-1 at the 216th cycle at a current density of 100 mA·g-1. The excellent cycling ability and high reversible capacity are attributed to a synergetic effect of the good conductivity of the SiO2@C-G hybrids, the small SiO2 particle size and the good dispersion of SiO2 nanoparticles in the hybrids. This methodology may provide a simple, scalable and eco-friendly strategy to prepare superior electrode materials from cheap and low electrical conductivity metal oxides.
  • loading
  • Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
    Liu S H, Wang Z Y, Yu C, et al. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life[J]. Advanced Materials, 2013, 25(25): 3462-3467.
    Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials, 2009, 21(25-26): 2664-2680.
    Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): 28-62.
    Li M Q, Yu Y, Li J, et al. Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability[J]. Journal of Materials Chemistry A, 2015, 3(4): 1476-1482.
    Chang W S, Park C M, Kim J H, et al. Quartz (SiO2): a new energy storage anode material for li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5): 6895-6899.
    Sun Q, Zhang B, Fu Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries[J]. Applied Surface Science, 2008, 254(13): 3774-3779.
    Kim Y K, Moon J W, Lee J G, et al. Porous carbon-coated silica macroparticles as anode materials for lithium ion batteries: Effect of boric acid[J]. Journal of Power Sources, 2014, 272: 689-695.
    Lv P P, Zhao H L, Gao C H, et al. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries[J]. Electrochimica Acta, 2015, 152: 345-351.
    Lv P P, Zhao H L, Wang J, et al. Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 291-294.
    Yao Y, Zhang J J, Xue L. G, et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(23): 10240-10243.
    Guo B K, Shu J, Wang Z W, et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2008, 10(12): 1876-1878.
    Yang X Q, Huang H, Li Z H, et al. Preparation and lithium-storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure[J]. Carbon, 2014, 77: 275-280.
    Luo W, Bommier C, Jian Z L, et al. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2626-2631.
    Li Z T, Wu G L, Liu D, et al. Graphene enhanced carbon-coated tin dioxide nanoparticles for lithium-ion secondary batteries[J]. Journal of Materials Chemistry A, 2014, 2(20): 7471-7477.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
    Ren Y R, Wei H M, Huang X B, et al. A facile synthesis of SiO2@C@graphene composites as anode material for lithium ion batteries[J]. International of Journal of Electrochemical Science, 2014, 9(12): 7784-7794.
    Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1291.
    Luo D, Zhang G X, Liu J, et al. Evaluation criteria for reduced graphene oxide[J]. Journal of Physical Chemistry C, 2011, 115(23): 11327-11335.
    Sun J, Teng X Y, Yang J X, et al. One pot synthesis of a highly water-dispersible hybrid glucose carbides and reduced graphene oxide material with superior electrical capacitance[J]. Journal of Materials Science, 2013, 48(23): 8277-8286.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(12010): 228-240.
    Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-877.
    Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
    Wu G L, Wu M B, Wang D, et al. A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries[J]. Applied Surface Science, 2014, 315: 400-406.
    Wu Y P, Jiang C Y, Wan C R, et al. Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries[J]. Electrochemistry Communications, 2000, 2(4): 272-275.
    Wu G L, Li Z T, Wu W T, et al. Effects of calcination on the preparation of carbon-coated SnO2/graphene as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2014, 615: 582-587.
    Gao B, Sinha S, Fleming L, et al. Alloy formation in nanostructured silicon[J]. Advanced Materials, 2001, 13(11): 816-819.
    Fei H L, Peng Z W, Li L, et al. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries[J]. Nano Research, 2014, 7(4): 502-510.
    Zhou G, Wang D W, Hou P X, et al. A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(34): 17942-17946.
    Do J S, Weng C H. Preparation and characterization of CoO used as anodic material of lithium battery[J]. Journal of Power Sources, 2005, 146(1-2): 482-486.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(484) PDF Downloads(457) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return