Kayo Oliveira Vieira, Jefferson Bettini, Luiz Fernando Cappa de Oliveira, Jefferson Luis Ferrari, Marco Antonio Schiavon. Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths. New Carbon Mater., 2017, 32(4): 327-337. doi: 10.1016/S1872-5805(17)60126-4
Citation: Kayo Oliveira Vieira, Jefferson Bettini, Luiz Fernando Cappa de Oliveira, Jefferson Luis Ferrari, Marco Antonio Schiavon. Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths. New Carbon Mater., 2017, 32(4): 327-337. doi: 10.1016/S1872-5805(17)60126-4

Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths

doi: 10.1016/S1872-5805(17)60126-4
Funds:  This work was supported by CAPES,CNPq,and FAPEMIG.The authors would like to acknowledge the LME/LNNano for providing the equipment and technical support for experiments involving transmission electron microscopy (TEM).
  • Received Date: 2017-03-22
  • Accepted Date: 2017-08-31
  • Rev Recd Date: 2017-06-09
  • Publish Date: 2017-08-28
  • We report the synthesis of novel multicolor photoluminescent carbon quantum dots (CQDs) from multi-wall carbon nanotubes, and their covalent functionalization with amines by peptide bonds. The resulting CQDs consisted of quasi-spherical graphite nanocrystals around 10 nm diameter, which were capped by amines with different hydrocarbon chains such as propylamine, octylamine, dodecylamine and octadecylamine. The introduction of nitrogen atoms and the hydrocarbon chains in the surface of the CQDs dramatically affected their photoluminescence profiles, quantum yields and solubility. The photoluminescence emission wavelength of these novel organic-soluble CQDs depended on the excitation wavelength and their quantum yields varied with the chain length of the hydrocarbon chain attached to the surface of the carbon dots.
  • loading
  • Dai L, Chang DW, Baek J, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small, 2012, 8: 1130-1166.
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 347: 56-58.
    Guoab S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chem Soc Rev, 2011, 40(40): 2644-2672.
    Zhu C, Zhaia J, Dong S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chem Commun, 2012, 48: 9367-9369.
    Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalysts design angew[J]. Chem Int Ed, 2010, 49: 4430-4434.
    Mirtchev P, Henderson EJ, Soheilnia N, et al. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells[J]. J Mater Chem, 2012, 22: 1265-1269.
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126: 12736-12737.
    Dong Y, Wang R, Li H, et al. Polyamine-functionalized carbon quantum dots for chemical sensing[J]. Carbon, 2012, 50: 2810-2815.
    Chandra S, Pathan SH, Mitra S, et al. Tuning of photoluminescence on different surface functionalized carbon quantum dots[J]. RSC Advances, 2012, 2: 3602-3606.
    Zhang J, Shen W, Pan D, et al. Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose[J]. New J Chem, 2010, 34: 591-593.
    De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice[J]. RSC Adv, 2013, 3: 8286-8290.
    Liu Y, Liu C, Zhang Z. Synthesis of highly luminescent graphitized carbon dots and the application in Hg2+ detection[J]. Applied Surface Science, 2012, 263: 481-485.
    Stengl V, Bakardjieva S, Henych J, et al. Blue and green luminescence of reduced graphene oxide quantum dots[J]. Carbon, 2013, 63: 537-546.
    Kwon W, Rhee S. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles[J]. Chem Commun, 2012, 48: 5256-5258.
    Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots[J]. Chem Commun, 2009, 1: 3774-3776.
    Zhang Y Q, Ma D, Zhang Y, et al. N-doped carbon quantum dots for TiO2-based Photocatalysts and dye-sensitized solar cells[J]. Nano Energy, 2013, 2: 545-552.
    Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J]. Dalton Trans, 2012, 41: 9526-9531.
    Zong J, Zhu Y, Yang X, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors[J]. Chem Commun, 2011, 47: 764-766.
    Wang J, Wang C, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns[J]. Angew Chem Int, 2012, 51: 9297-9301.
    Wang Q, Zheng H, Long Y, et al. Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide[J]. Carbon, 2011, 49: 3134-3140.
    Sahu S, Behera B, Maiti TK, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chem Commun, 2012, 48: 8835-8837.
    Liang Q, Ma W, Shi Y, et al. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications[J]. Carbon, 2013, 60: 421-428.
    Hsu P, Chang H. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups[J]. Chem Commun, 2012, 48: 3984-3986.
    Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Lett, 2012, 12: 844-849.
    Tao H, Yang K, Ma Z, et al. In Vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2): 281-290.
    Lai C, Hsiao Y, Peng Y, et al. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release[J]. J Mater Chem, 2012, 22: 14403-14409.
    Hung NT, Anoshkin IV, Dementjev AP, et al. Functionalization and solubilization of thin multiwalled carbon nanotubes[J]. Inorganic materials, 2008, 44(3): 219-223.
    Veloso MV, Filho AGS, Filho JM, et al. Ab initio study of covalently functionalized carbon nanotubes[J]. Chemical Physics Letters, 2006, 430: 71-74.
    Qian Z, Ma J, Shan X, et al. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation[J]. RSC Adv, 2013, 3: 14571-14579.
    Ding H, Cheng L, Ma Y, et al. Luminescent carbon quantum dots and their application in cell imaging[J]. New J Chem, 2013, 37: 2515-2520.
    Brouwer AM. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report)[R]. Pure Appl Chem, 2011, 83(12): 2213-2228.
    Niyogi S, Hamon MA, Hu H, et al. Chemistry of single-walled carbon nanotubes[J]. Acc Chem Res, 2002, 35: 1105-1113.
    Kosynkin DV, Higginbotham AL, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 245(16): 872-877.
    Hsu P, Shih Z, Lee C, et al. Synthesis and analytical applications of photoluminescent carbon nanodots[J]. Green Chem, 2012, 14: 917-920.
    Ferrari, AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review, 2000, 61(20): 14095-14107.
    Bystrzejewski M, Huczko A, Lange H, et al. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions[J]. Journal of Colloid and Interface Science, 2010, 45(345): 138-142.
    Hu Y, Yang J, Tian J, et al. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence[J]. Carbon, 2014, 77: 775-782.
    Liu Y, Xiao N, Gong N, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes[J]. Carbon, 2014, 68: 258-264.
    Jang JW, Lee DK, Lee CE, et al. Metallic conductivity in bamboo-shaped multiwalled carbon nanotubes[J]. Solid State Commun, 2002, 122: 619-662.
    Hola K, Bourlinos AB, Kozak O, et al. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO- induced red-shift emission[J]. Carbon, 2014, 70: 279-286.
    Li X, Zhang S, Kulinich SA, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Nature, 2014, 4: 4976: 1-8.
    Bao L, Zhang Z, Tian Z, et al. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism[J]. Adv Mater, 2011, 23, 5801-5806.
    Zhuo Y, Miao H, Zhong D, et al. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging[J]. Materials Letters, 2015, 139: 197-200.
    Zheng X, Wang H, Gong Q, et al. Highly luminescent carbon nanoparticles as yellow emission conversion phosphors[J]. Materials Letters, 2015, 143: 290-293.
    Resch-Genger U, Rurack K. Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report)[R]. Pure Appl Chem, 2013, 85(10): 2005-2026.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(627) PDF Downloads(338) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return