LIU Lei, LU Juan, ZHANG Yi-xin, LIU Meng, YU Yi-feng, CHEN Ai-bing. Synthesis of nitrogen-doped graphitic carbon nanocapsules from a poly(ionic liquid) for CO2 capture. New Carbon Mater., 2017, 32(4): 380-384. doi: 10.1016/S1872-5805(17)60129-X
Citation: LIU Lei, LU Juan, ZHANG Yi-xin, LIU Meng, YU Yi-feng, CHEN Ai-bing. Synthesis of nitrogen-doped graphitic carbon nanocapsules from a poly(ionic liquid) for CO2 capture. New Carbon Mater., 2017, 32(4): 380-384. doi: 10.1016/S1872-5805(17)60129-X

Synthesis of nitrogen-doped graphitic carbon nanocapsules from a poly(ionic liquid) for CO2 capture

doi: 10.1016/S1872-5805(17)60129-X
Funds:  National Natural Science Foundation of China (20676070);Natural Science Foundation of Hebei Province (B2015208109);Hebei Training Program for Talent Project (A201500117);Hebei One Hundred Excellent Innovative Talent Program (III)(SLRC2017034);Hebei Science and Technology Project (17214304D,16214510D).
  • Received Date: 2017-06-15
  • Accepted Date: 2017-08-31
  • Rev Recd Date: 2017-08-05
  • Publish Date: 2017-08-28
  • A poly(ionic liquid) was prepared from an ionic liquid monomer that was obtained by the reaction of 1-vinylimidazole, 4-vinyl-benzene chloride with 2,6-di-tert-butyl-4-methylphenol. The poly(ionic liquid) was mixed with K3[Fe(CN)6] and a 5 nm silica colloidal sol, carbonized at 900℃ for 4 h, and sequentially treated with HNO3 and NaOH to remove the iron and silica to obtain nitrogen-doped graphitic carbon nanocapsules. The iron and silica acted as a graphitization catalyst and template, respectively. The nitrogen-doped graphitic carbon nanocapsules have a diameter of 50 nm and a wall thickness of 6 nm and have a high adsorption capacity and good recyclability for CO2 capture. The addition of SiO2 nanoparticles in the synthesis significantly increased the specific surface area from 100.4 to 865.7 m2·g-1 and the CO2 adsorption capacity from 0.76 to 2.14 mmol·g-1.
  • loading
  • Luo H, Zhu C, Bao L, et al. Preparation of N-doped activated carbons with high CO2 capture performance from microalgae (Chlorococcum sp.)[J]. RSC Adv, 2016, 6: 38724-38730.
    Guo D H, Shibuy R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
    Vasileff V, Chen S, Qiao S. Three dimensional nitrogen-doped graphene hydrogels with in-situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in neutral electrolyte[J]. Nanoscale Horiz, 2016, 1: 41-44.
    Deng Y, Xie Y, Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors[J]. J Mater Chem A, 2016, 4: 1144-1173.
    Fahsi K, Dumail X, Dutremez SG, et al. Diacetylenes with ionic-liquid-like substituents: associating a polymerizing cation with a polymerizing anion in a single precursor for the synthesis of N-doped carbon materials[J]. Chemistry-A European Journal, 2016, 5: 1682-1695.
    Xie Z, Wu Z, Tan B, et al. Ionothermal synthesis of microporous and mesoporous carbon areogels from fructose as electrode materials for supercapacitors[J]. J Mater Chem A, 2016, 4: 4497-4505.
    Paraknowitsch J P, Thomas A, Antonietti M. A detailed view on polycondensation of ionic liquid monomers towards nitrogen doped carbon materials[J]. J Mater Chem, 2010, 20: 6746-6758.
    Chen A B, Yu Y F, Wang Y Y, et al. Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors[J]. J Mater Chem A, 2013, 1: 1045-1047.
    Wilke A, Yuan J Y, Antonietti M, et al. Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid)[J]. ACS Macro Lett, 2012, 1(8): 1028-1031.
    Hsieh C T, Chen Y Y, Lee C E, et al. Thermal transport in stereo carbon framework using graphite nanospheres and graphene nanosheets[J]. Carbon, 2016, 106: 132-141.
    Jian Z L, Xing Z Y, Bommier C, et al. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode[J]. Adv. Energy Mater, 2016, 6(3): DOI: 10.1002/aenm.201501874.
    Yin L H, Wan Y X, Han C C, et al. Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries[J]. Journal of Power Sources, 2016, 305: 156-160.
    Li H, Tao Y, Zheng X Y, et al. Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance[J]. Nanoscale, 2015, 7: 18459-18463.
    Wu C H, Wang C H, Lee M T, et al. Unique Pd/graphene nanocomposites constructed using supercritical fluid for superior electrochemical sensing performance[J]. J Mater Chem, 2012, 22: 21466-21471.
    Lee W H, Yang H N, Park K W, et al. Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell[J]. Energy, 2016, 96: 314-324.
    Sun T, Wu Q, Jiang Y F, et al. Sulfur and nitrogen codoped carbon tubes as bifunctional metal free electrocatalysts for oxygen reduction and hydrogen evolution in acidic media[J]. Chem Eur J, 2016, 22(30): 10326-10329.
    Zhang J, Wang R, Liu E Z, et al. Spherical structures composed of multiwalled carbon nanotubes: formation mechanism and catalytic performance[J]. Angew Chem Int Ed, 2012, 51(30): 7581-7585.
    Luo Z, Cetegen S A, Miao R, et al. Structure-property relationships of copper modified mesoporous TiO2 materials on alkyne homocoupling reactions[J]. Journal of Catalysis, 2016, 338: 94-103.
    Chu W C, Cheng C C, Bastakoti B P, et al. Hierarchical mesoporous silicas templated by PEb-PEO-b-PLA triblock copolymer for fluorescent drug delivery[J]. RSC Adv, 2016, 6, 33811-33820.
    Chen A, Li S, Yu Y, et al. Self-catalyzed strategy to form hollow carbon nanospheres for CO2 capture[J]. Materials Letters, 2016, 185(15): 63-66.
    Yao M, Wang L, Hu X, et al. Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture[J]. J Mater Sci, 2015, 50(3): 1221-1227.
    Ullah R, Atilhan M, Anaya B, et al. Investigation of ester and amide linker based porous organic polymers for carbon dioxide capture and separation at wide temperatures and pressures[J]. ACS Appl Mater Interfaces, 2016, 8(32): 20772-20785.
    Huang J, Zhou X, Lamprou A, et al. Nanoporous polymers from crosslinked polymer precursors via tert-Butyl group deprotection and their carbon dioxide capture properties[J]. Chem Mater, 2015, 27(21): 7388-7394.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(348) PDF Downloads(403) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return