Jiyoung Kim, Dong-Hyun Peck, Byungrok Lee, Seong-Ho Yoon, Doo-Hwan Jung. An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system. New Carbon Mater., 2016, 31(4): 378-385. doi: 10.1016/S1872-5805(16)60020-3
Citation: Jiyoung Kim, Dong-Hyun Peck, Byungrok Lee, Seong-Ho Yoon, Doo-Hwan Jung. An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system. New Carbon Mater., 2016, 31(4): 378-385. doi: 10.1016/S1872-5805(16)60020-3

An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system

doi: 10.1016/S1872-5805(16)60020-3
More Information
  • Corresponding author: Doo-Hwan Jung.E-mail:doohwan@kier.re.kr
  • Received Date: 2016-06-28
  • Accepted Date: 2016-08-29
  • Rev Recd Date: 2016-07-28
  • Publish Date: 2016-08-28
  • A membrane-assisted capacitive deionization (CDI) system was developed for the purification of water containing sodium chloride using activated carbon fibers (ACFs) as capacitor electrode materials. The ACFs have different degrees of activation with different surface areas and pore size distributions. Their desalination performance for sodium or chloride ions was investigated. Results indicate that the salt removal efficiency and surface area-normalized electrosorption capacity for each ion depend on the surface area, pore depth and the match between the pore sizes of the ACFs and the radius of each hydrated ion. A high surface area and shallow pores favor the salt removal efficiency and a high surface area-normalized electrosorption capacity. The ACF with a median pore size of 0.69 nm performs best for sodium ion removal and those with median pore sizes of 1.09 and 1.52 nm are best for chloride ion removal, which could be ascribed to the fact that the radius of a hydrated sodium ion (0.66 nm) is smaller than that of a hydrated chloride ion (0.72 nm). An asymmetric electrode material configuration is needed to optimize both the anion and cation adsorption in the membrane-assisted CDI system.
    Supporting Information
  • loading
  • Elimelech M, Phillip W A. The future of seawater desalination:Energy, technology, and the environment[J]. Science, 2011, 333:712-717.
    Welgemoed T J, Schutte C F. Capacitive deionization technologyTM:An alternative desalination solution[C]. European Conference on Desalination and the Environment, ITALY, 2005,183:327-340.
    Oda H, Nakagawa Y. Removal of ionic substances from dilute solution using activated carbon electrodes[J]. Carbon, 2003, 41:1037-1047.
    Lee J B, Park K K, Eum H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196:125-134.
    Lee J H, Bae W S, Choi J H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J]. Desalination, 2010, 258:159-163.
    Biesheuvel P M, Bazant M Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes[J]. Physical Review E, 2010, 81:031502.
    Hou C H, Huang C Y, Hu C Y. Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions[J]. Int J Environ Sci Technol, 2013, 10:753-760.
    Nugrahenny A U, Kim J, Kim S K, et al. Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization[J]. Carbon Letters, 2014, 15:38-44.
    Oren Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)[J]. Desalination, 2008, 228:10-29.
    Anderson M A, Cudero A L, Palma J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices:Will it compete?[J]. Electrochimica Acta, 2010, 55:3845-3856.
    Porada S, Zhao R, van der Wal A, et al. Biesheuvel, review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58:1388-1442.
    Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. J Electrochem Soc, 1996, 143:159-169.
    Jung H H, Hwang S W, Hyun S H, et al. Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying[J]. Desalination, 2007, 216:377-385.
    Kohli D K, Singh R, Singh A, et al. Enhanced salt-dsorption capacity of ambient pressure dried carbon aerogel activated by CO2 for capacitive deionization application[J]. Desalination and Water Treatment, 2014:1-7.
    Avraham E, Yaniv B, Soffer A D. Aurbach, developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ separation in water capacitive desalination[J]. J Phys Chem C, 2008, 112:7385-7389.
    Huang Z H, Wang M, Wang L, et al. Relation between the charge efficiency of activated carbon fiber and its desalination performance[J]. Langmuir, 2012, 28:5079-5084.
    Chou W L, Cheng L C, Hu J L, et al. Desalination by electrochemically enhanced adsorption using activated carbon fiber cloth electrodes[J]. Fresenius Environmental Bulletin, 2013, 22:117-122.
    Chen Y, Yue M, Huang Z H, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal, 2014, 252:30-37.
    Tsouris C, Mayes R, Kiggans J, et al. Mesoporous carbon for capacitive deionization of saline water[J]. Environ Sci Technol, 2011,45:10243-10249.
    Wang G, Qian B, Dong Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization[J]. Separation and Purification Technology, 2013, 103:216-221.
    Li H, Lu T, Pan L, et al, Electrosorption behavior of graphene in NaCl solutions[J]. J Mater Chem, 2009, 19:6773-6779.
    Wang H, Zhang D, Yan T, et al. Graphene prepared via a novel pyriding-theral strategy for capacitive deionization[J]. J Mater Chem, 2012, 22:23745-23748.
    Jia B, Zou L. Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionization[J]. Carbon, 2012, 50:2315-2321.
    Li H, Gao Y, Pan L, et al. Electrosorptive desalination by carbon nanotubes and nanofibers electrodes and ion-exchange membranes[J]. Water Research, 2008, 42:4923-4928.
    Yang C M, Choi W H, Na B K, et al. Capacitive deionization of NaCl solution with carbon aerogel-silica gel composite electrodes[J]. Desalination, 2005, 174:125-133.
    Porada S, Borchardt L, Bryjak M, et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy Environ Sci, 2013, 6:3700-3712.
    Biesheuvel P M, Zhao R, Porada S, et al. Theory of membrane capacitive deionzation including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360:239-248.
    Han L, Karthikeyan K G, Anderson M A, et al. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization[J]. Journal of Colloid and Interface Science, 2014, 430:93-99.
    Tien P D, Morisaka H, Satoh T, et al. Yamaguchi, efficient evolution of hydrogen from tetrahydronaphthalene upon palladium catalyst supported on activated carbon fiber[J]. Energy & Fuels, 2003, 17:658-660.
    J Miyawaki, T Shimohara, N Shirahama, et al. Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature[J]. Applied Catalysis B:Environmental, 2011, 110:273-278.
    Kisamori S, Kuroda K, Kawano S, et al. Oxidative removal of SO2 and recovery of H2SO4 over poly(acrylonitrile)-based active carbon fiber[J]. Energy & Fuels, 1994, 8:1337-1340.
    Lee S, Mitani I, Yoon S, et al. Mochida, Capacitance and H2SO4 adsorption in the pores of activated carbon fibers[J]. Appl Phys A, 2006, 82:647-652.
    Shiratori N, Lee KJ, Miyawaki J, et al. Pore structure analysis of activated carbon fiber by microdomain-based model[J]. Langmuir, 2009, 25:7631-7637.
    Lee K J, Miyawaki J, Shiratori N, et al. Toward an effective adsorbent for polar pollutants:formaldehyde adsorption by activated carbon[J]. Journal of Hazardous Materials, 2013, 260:82-88.
    El-Merraoui M, Aoshima M, Kaneko K. Micropore size distribution of activated carbon fiber using the density functional theory and other method[J]. Langmuir, 2000, 26:4300-4304.
    Kim Y J, Choi J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71:70-75.
    Kim Y J, Choi J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44:990-996.
    Simon P, Burke A. Nanostructured carbons:Double-layer capacitance and more, The electrochemical society interface[J]. 2008, 17:38-43.
    Smith D E, Dang L X. Computer simulations of NaCl association in polarizable water[J]. J Chem Phys, 1994, 100:3757-3766.
    Kalluri R K, Biener M M, Suss M E, et al. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes[J]. Phys Chem Chem Phys, 2013, 15:2309-2320.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(484) PDF Downloads(411) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return