CUI Jia-li, GAO Yong-hua, GAO Li-zhen. Preparation of MWCNTs-TiO2 photocatalysts in thin liquid films under continuous flow conditions and their photocatalytic activities for quinoline degradation. New Carbon Mater., 2016, 31(4): 399-406.
Citation: CUI Jia-li, GAO Yong-hua, GAO Li-zhen. Preparation of MWCNTs-TiO2 photocatalysts in thin liquid films under continuous flow conditions and their photocatalytic activities for quinoline degradation. New Carbon Mater., 2016, 31(4): 399-406.

Preparation of MWCNTs-TiO2 photocatalysts in thin liquid films under continuous flow conditions and their photocatalytic activities for quinoline degradation

Funds:  Natural Science Foundation of Shanxi of China(2014021034-1);National Natural Science Foundation of China(51408397).
  • Received Date: 2016-03-20
  • Accepted Date: 2016-08-29
  • Rev Recd Date: 2016-07-28
  • Publish Date: 2016-08-28
  • MWCNTs-TiO2 photocatalysts were formed within a very thin liquid film generated on a continuous flow spinning disc surface, in which two jets located in the center of the disc were fed with a suspension of HNO3-purified MWCNTs (0.5 g) in a mixture of tetra-n-butyl titanate (40 mL), ethanol (100 mL) and acetic acid (10 mL), and a solution of ethanol (30 mL), acetic acid (20 mL) and water (8 mL). The collected products were gelled at room temperature for 24 h, dried at 80℃ for 4 h and calcined at 350, 400 and 450℃ for 4 h. The samples were characterized by XRD, FT-IR, SEM, TEM and UV-vis DRS. The photocatalytic properties were evaluated by the degradation of quinoline under visible light irradiation. Results showed that TiO2 nanoparticles of the photocatalyst were smaller (5-10 nm) than when there were no MWCNTs present (10-15 nm), and were well distributed between the MWCNTs. MWCNTs promoted the visible light absorption of the samples. The photocatalyst calcined at 450℃ showed the strongest visible light absorption and best catalytic activity, andproduced a quinoline degradation of 86.6% after 180 min.
  • loading
  • Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1):69-96.
    Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters:a review[J]. Environ Int, 2004, 30(7):953-971.
    Xu C K, Killmeyer R, Gray M L, et al. Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting[J]. Electrochem Commun, 2006, 8(10):1650-1654.
    Dong F, Wang H, Wu Z. One-step "green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity[J]. The Journal of Physical Chemistry C, 2009, 113(38):16717-16723.
    Noworyta K, Augustynski J. Spectral photoresponses of carbon-doped TiO2 film electrodes[J]. Electrochemical and Solid-State Letters, 2004, 7(6):E31-E33.
    Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angewandte Chemie International Edition, 2003, 42(40):4908-4911.
    An G M, Ma W H, Sun Z Y, et al. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation[J]. Carbon, 2007, 45(9):1795-1801.
    Xiao Q, Ouyang L L. Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline:Effect of calcination temperature[J]. Chem Eng J, 2009, 148(2-3):248-253.
    Chin S F, Iyer K S, Raston C L, et al. Size selective synthesis of superparamagnetic nanoparticles in thin fluids under continuous flow conditions[J]. Adv Funct Mater, 2008, 18(6):922-927.
    Li M, He J. Synthesis and room-temperature ferromagnetism of porous V-doped rutile TiO2 microspheres[J]. Mater Lett, 2016, 174:48-52.
    吴玉程, 宋林云, 刘晓璐,等. 碳纳米管负载纳米TiO2复合材料的制备及组织结构表征[J]. 功能材料, 2008, 3(39):497-499. (WU Yu-cheng, SONG Lin-yun, LIU Xiao-lu, et al. Preparation and characterization of carbon nanotubes-TiO2 nanocomposites[J]. Journal of Functional Materials, 2008, 3(39):497-499.)
    Wang H, Wang H L, Jiang W F, et al. Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation[J]. Water Res, 2009, 43(1):204-210.
    Zhang F J, Chen M L, Oh W C. Photoelectrocatalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation[J]. New Carbon Mater, 2010, 25(5):348-356.
    Brownson J R S, Tejedor-Tejedor M I, Anderson M A. Photoreactive anatase consolidation characterized by FTIR spectroscopy[J]. Chem Mater, 2005, 17(25):6304-6310.
    Burgos M, Langlet M. The sol-gel transformation of TIPT coatings:A FTIR study[J]. Thin Solid Films, 1999, 349(1-2):19-23.
    Huang Y, Ho W, Lee S, et al. Effect of carbon doping on the mesoporous structure of nanocrystalline Titanium dioxide and its solar-light-driven photocatalytic degradation of NOx[J]. Langmuir, 2008, 24(7):3510-3516.
    Yang J, Bai H, Tan X, et al. IR and XPS investigation of visible-light photocatalysis-Nitrogen-carbon-doped TiO2 film[J]. Appl Surf Sci, 2006, 253(4):1988-1994.
    Peiró A M, Peral J, Domingo C, et al. Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions[J]. Chem Mater, 2001, 13(8):2567-2573.
    汪青, 尚静, 赵凤伟, 等. 多壁碳纳米管负载TiO2复合器件可见光光催化降解RhB[J]. 分子催化, 2010, 24(6):537-541. (WANG Qing, SHANG Jing, ZHAO Feng-we, et al. Visible-lightphoto catalytic degradation of Rhodamine Bover MWCNTs-TiO2 composite device[J]. Journal of Molecular Catalysis(China), 2010, 24(6):537-541.)
    Momeni M M, Ghayeb Y. Preparation of cobalt coated TiO2and WO3-TiO2 nanotube films via photo-assisted deposition with enhanced photocatalytic activity under visible light illumination[J]. Ceram Int, 2016, 42(6):7014-7022.
    Wu Y, Chen S, Zhao J, et al. Mesoporous graphitic carbon nitride and carbon-TiO2 hybrid composite photocatalysts with enhanced photocatalytic activity under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):797-807.
    Momeni M M, Nazari Z. Preparation of TiO2 and WO3-TiO2 nanotubes decorated with PbO nanoparticles by chemical bath deposition process:A stable and efficient photo catalyst[J]. Ceram Int, 2016, 42(7):8691-8697.
    Zhu S, Yang X, Wang G N, et al. Facile preparation of P-25 films dip-coated nickel foam and high photocatalytic activity for the degradation of quinoline and industrial wastewater[J]. In International Journal of Chemical Reactor Engineering, 2011, 9(1):139-143.
    Jing J, Zhang Y, Li W, et al. Visible light driven photodegradation of quinoline over TiO2/graphene oxide nanocomposites[J]. J Catal, 2014, 316:174-181.
    Haji Jumali, Mohamad Alosfur F K, Radiman S, et al. Rapid synthesis of TiO2/MWCNTs nanocatalyst with enhanced photocatalytic activity using modified microwave technique[J]. Mat Sci Semicon Proc, 2014, 25:207-210.
    Nguyen V H, Ren Y, Lee Y R, et al. Microwave-assisted synthesis of carbon nanotube-TiO2 nanocomposites in ionic liquid for the photocatalytic degradation of methylene blue[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2012, 42(2):296-301.
    Alosfur F K M, Jumali M H H, Radiman S, et al. Modified microwave method for the synthesis of visible light-responsive TiO2/MWCNTs nanocatalysts[J]. Nanoscale Res Lett, 2013, 8(1):1-6.
    B Czech, W Buda, S Pasieczna-Patkowska, et al. MWCNT-TiO2-SiO2 nanocomposites possessing the photocatalytic activity in UVA and UVC[J]. Applied Catalysis B:Environmental, 2014,162:564-572.
    Wang W, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2composite catalysts prepared by a modified sol-gel method[J]. Journal of Molecular Catalysis A:Chemical, 2005, 235(1-2):194-199.
    Jung K H, Hong J S, Vittal R, et al. Enhanced photocurrent of dye-sensitized solar cells by modification of TiO2 with carbon nanotubes[J]. Chem Lett, 2002, (8):864-865.
    Banerjee S, Wong S S. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures[J]. Nano Lett, 2002, 2(3):195-200.
    Kamat P V, Bedja I, Hotchandani S. Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 in colloidal TiO2 semiconductor suspensions[J]. J Phys Chem-Us, 1994, 98(37):9137-9142.
    Yu Y, Yu J C, Chan C Y, et al. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye[J]. Applied Catalysis B:Environmental, 2005, 61(1-2):1-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(410) PDF Downloads(618) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return