Roksana Muzyka, Monika Kwoka, Lukasz Smedowski, Noel Díez, Grazyna Gryglewicz. Oxidation of graphite by different modified Hummers methods. New Carbon Mater., 2017, 32(1): 15-20. doi: 10.1016/S1872-5805(17)60102-1
Citation: Roksana Muzyka, Monika Kwoka, Lukasz Smedowski, Noel Díez, Grazyna Gryglewicz. Oxidation of graphite by different modified Hummers methods. New Carbon Mater., 2017, 32(1): 15-20. doi: 10.1016/S1872-5805(17)60102-1

Oxidation of graphite by different modified Hummers methods

doi: 10.1016/S1872-5805(17)60102-1
  • Received Date: 2016-10-09
  • Accepted Date: 2017-02-25
  • Rev Recd Date: 2017-01-08
  • Publish Date: 2017-02-28
  • Graphite oxides with different oxygen contents and specifications were prepared from a commercial graphite by different versions of the Hummers method and by oxidation with sodium dichromate. The chemical and structural characteristics of the graphite oxides were studied by elemental analysis(EA), Fourier-transform infrared spectroscopy(FT-IR), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Dichromate oxidation provided a low oxygen fixation, mainly in the form of hydroxyl and epoxy groups. A much more efficient oxidation was achieved by using the Hummers method. The use of NaNO3 and a reaction time of 2 h led to the highest oxygen content in the graphite oxide, over 40 wt%, and oxygen was found to be single- and double-bonded to carbon. SEM and XRD observations showed a high spacing of the graphitic layers under these conditions. These results prove that, even using the same oxidizing method, the chemical structure of graphite oxides can be tailored by changing reaction conditions.
  • loading
  • Brodie B C. Sur le poids atomique du graphite[J]. Annales des Chimie et des Physique, 1860, 59: 466-472.
    Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(3934): 1530-1534.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39: 228-240.
    Hofmann U, Holst R. Uber die surenatur und die methylierung von graphitoxyd[J]. Chemischen Gesellschaft B, 1939, 72: 754-771.
    Ruess G. Uber das Graphitoxyhydroxyd (Graphitoxyd)[J]. monatshefte fur chemie, 1946, 76(3-5): 381-417.
    He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1-2): 53-56.
    Botas C, Álvarez P, Blanco C, et al. The effect of the parent graphite on the structure of graphene oxide[J]. Carbon, 2012, 50(1): 275-282.
    Botas C, Álvarez P, Blanco C, et al. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods[J]. Carbon, 2013, 65: 156-164.
    Chandra S, Sahu S, Pramanik P. A novel synthesis of graphene by dichromate oxidation[J]. Materials Science and Engineering B, 2010, 167(3): 133-136.
    Chua C K, Sofer Z, Pumera M. Graphite oxides: Effects of permanganate and chlorate oxidants on the oxygen composition[J]. Chemistry-A European Journal, 2012, 18(42): 13453-13459.
    Rodriguez-Pastor I, Ramos-Fernandez G, Varela-Rizo H, et al. Towards the understanding of the graphene oxide structure: How to control the formation of humic-and fulvic-like oxidized debris[J]. Carbon, 2015, 84: 299-309.
    Moo J G S, Khezri B, Webster R D, et al. Graphene oxides prepared by Hummers, Hofmann's, and Staudenmaier's methods: Dramatic influences on heavy-metal-ion adsorption[J]. ChemPhysChem, 2014, 15(14): 2922-2929.
    Seredych M, Tamashausky A V, Bandosz T J. Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions[J]. Advanced Functional Materials, 2010, 20(10): 1670-1679.
    Poh H L, Sanek F, Ambrosi A, et al. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties[J]. Nanoscale, 2012, 4: 3515-3522.
    Hummers W S. US Patent No 2798878[P]. United States Patent Office, 1954.
    Nekahi A, Marashi P H, Haghshenas D. Transparent conductive thin film of ultra large reduced graphene oxide monolayers[J]. Applied Surface Science, 2014, 295: 59-65.
    Drewniak S, Pustelny T, Muzyka R, et al. Investigations of selected physical properties of graphite oxide and thermally exfoliated/reduced graphene oxide in the aspect of their applications in photonic gas sensors[J]. Photonics Letters of Poland, 2015, 7(2): 47-49.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
    Jeong H K, Colakerol L, Jin M H, et al. Unoccupied electronic states in graphite oxides[J]. Chemical Physical Letters, 2008, 460(4-6): 499-502.
    Fan X, Yu Ch, Yang J, et al. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors[J]. Carbon, 2014, 70: 130-141.
    Acik M, Lee G, Mattevi C, et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy[J]. The Journal of Physical Chemisty C, 2011, 115(40): 19761-19781.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(847) PDF Downloads(1205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return