Samrat Paul, Bijumani Rajbongshi, Birinchi Bora, Ranjith G Nair, S K Samdarshi. Organic photovoltaic cells using MWCNTs. New Carbon Mater., 2017, 32(1): 27-34. doi: 10.1016/S1872-5805(17)60104-5
Citation: Samrat Paul, Bijumani Rajbongshi, Birinchi Bora, Ranjith G Nair, S K Samdarshi. Organic photovoltaic cells using MWCNTs. New Carbon Mater., 2017, 32(1): 27-34. doi: 10.1016/S1872-5805(17)60104-5

Organic photovoltaic cells using MWCNTs

doi: 10.1016/S1872-5805(17)60104-5
  • Received Date: 2016-10-23
  • Accepted Date: 2017-02-25
  • Rev Recd Date: 2017-01-06
  • Publish Date: 2017-02-28
  • MWCNTs were synthesized by chemical vapor deposition from Sesamum indicum oil, functionalized, cut into short lengths and used as additives in organic photovoltaic solar cells (OPVs) using poly (3-octylthiophene) (P3OT) as a photoactive molecule and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) as an exciton dissociation agent. Results indicate that the addition of the MWCNTs and the functionalized and cut MWCNTs increases the power conversion efficiency of the OPVs by 22% and 40%, respectively. MWCNTs improve the collection and transportation of holes from the P3OT after exciton dissociation owing to their high hole mobility. The functionalization and cutting of MWCNTs improves their dispersion in P3OT and PCBM, which further increases the power conversion efficiency.
  • loading
  • Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices[J]. Adv Mater, 1999, 11: 1281.
    Brabec C J, Cravino A,Meissner D,et al. Origin of the open circuit voltage of plastic solar cells[J]. Adv Funct Mater, 2001, 11(5): 374-380.
    Kymakis E, Amaratunga G A J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices[J]. Appl Phys Lett, 2002, 80: 112.
    Shaheen S E, Radspinner R, Peyghambarian N, et al. Fabrication of bulk heterojunction plastic solar cells by screen printing[J]. Appl Phys Lett, 2001, 78: 841.
    Reyes-Reyes M, López-Sandoval R, Liu J, et al. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites[J]. Sol Energy Mat & Solar Cell, 2007, 91:1478.
    Liu Z, He D, Wang Y, et al. Improving photovoltaic properties by incorporating both SPF graphene and functionalized multiwalled carbon nanotubes[J]. Solar Energy Materials and Solar Cells, 2010, 94(12): 2148-2153.
    Guldi D M, Rahman G M, Zerbetto F, et al. Carbon nanotubes in electron donor-acceptor nanocomposites[J]. Acc Chem Res, 2005, 38: 871-878.
    Patyk R L, Lomba B S, Nogueira A F, et al. Carbon nanotube-polybithiophene photovoltaic devices with high open-circuit voltage[J]. Physics status solidi, 2007, 1: R43-R45.
    Kalita G, Adhikari S, Aryal H R,et al. Cutting of carbon nanotubes for solar cell application[J]. Appl Phys Lett, 2008, 92: 123508.
    Rajiv K Singha, Jitendra Kumarb, Amit Kumara, et al. Poly(3-hexylthiophene): Functionalized single-walled carbon nanotubes: (6,6)-phenyl-C61-butyric acid methyl ester composites for photovoltaic cell at ambient condition[J]. Solar Energy Materials & Solar Cells, 2010, 94: 2386-2394.
    Kalita G, et al. Fullerene(C60) decoration in oxygen plasma treated multiwalled carbon nanotubes for photovoltaic application[J]. App Phy Lett, 2008, 92: 063508.
    Kanai Y. Atomistic oxidation mechanism of a carbon nanotube in nitric acid[J]. Physical Review Letters, 2010, 104: 066401.
    Paul S, Samdarshi S K. A green precursor for carbon nanotube synthesis[J]. New Carbon Materials, 2011, 26(2): 85-88.
    Kumar J. Self-assembly of SWCNT in P3HT matrix, Diamond Relat[J]. Mater, 2007, 16: 446-453.
    Hung L S, Tang C W. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode[J]. Appl Phys Lett, 1997, 70(2): 152-154.
    http://rredc.nrel.gov/solar/spectra/am1.5/, Reference Solar Spectral Irradiance: Air Mass 1.5 NREL retrieved on 1 May 2011.
    Emmenegger C, et al. Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism[J]. Carbon, 2003, 41: 539-547.
    Ermakova M A, Ermakov D Y, Chuvilin A L, et al. Decomposition of methane over iron catalysts at the range of moderate temperatures: The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments[J]. Jr of Cat, 2001, 201: 183-197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(451) PDF Downloads(419) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return