HAN Xiao, ZHAO Yan, SUN Jian-ming, LI Ye, ZHANG Jin-dong, HAO Yue. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites. New Carbon Mater., 2017, 32(1): 48-55. doi: 10.1016/S1872-5805(17)60107-0
Citation: HAN Xiao, ZHAO Yan, SUN Jian-ming, LI Ye, ZHANG Jin-dong, HAO Yue. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites. New Carbon Mater., 2017, 32(1): 48-55. doi: 10.1016/S1872-5805(17)60107-0

Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites

doi: 10.1016/S1872-5805(17)60107-0
  • Received Date: 2016-10-10
  • Accepted Date: 2017-02-25
  • Rev Recd Date: 2016-12-30
  • Publish Date: 2017-02-28
  • Carbon fiber-reinforced composites were manufactured by hot pressing stacked carbon fiber prepregs using graphene oxide (GO)-modified epoxy resin as the matrix. Tetrahydrofuran was used as the solvent to disperse GO in the epoxy resin. Results showed that a homogeneous GO-modified epoxy system could be obtained, which was stable for approximately 3 h, long enough to produce the prepreg. The incorporation of 0.10 wt% GO into the epoxy resin achieved the largest interlaminar shear strength (ILSS) of 96.14 MPa for laminates, 8.05% higher than that without GO. Also, the glass transition temperature of the composite was increased by approximately 5℃. The improvement of ILSS could be attributed to the toughening of the epoxy resin and an improvement in the interfacial adhesion between carbon fibers and epoxy matrix.
  • loading
  • Sun P, Zhao Y, Luo Y, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials and Design, 2011, 32(8): 4341-4347.
    Zhu J, Imam A, Crane R, et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength[J]. Composites Science and Technology, 2007, 67(7): 1509-1517.
    Sha J J, Dai J X, Li J, et al. Influence of carbon fiber's surface state on interlaminar shear properties of CFRP laminate[J]. Composite Interfaces, 2013, 20(8): 543-552.
    Rahman M M, Zainuddin S, Hosur M V, et al. Effect of NH2-MWCNTs on crosslink density of epoxy matrix and ILSS properties of E-glass/epoxy composites[J]. Composite Structures, 2012, 95: 213-221.
    Asi O. Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particles[J]. Journal of Reinforced Plastics and Composites, 2009, 28(23): 2861-2867.
    Yang Y, Lu C X, Su X L, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites[J]. Materials Letters, 2007, 61(17): 3601-3604.
    Dorigato A, Pegoretti A, Quaresimin M. Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates[J]. Materials Science and Engineering A, 2011, 528(19): 6324-6333.
    Ye Y, Chen H, Wu J, et al. Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix[J]. Composites Science and Technology, 2011, 71(5): 717-723.
    Davis D C, Wilkerson J W, Zhu J, et al. Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology[J]. Composite Structures, 2010, 92(11): 2653-2662.
    Fan Z, Santare M H, Advani S G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(3): 540-554.
    Chen Q, Wu W, Zhao Y, et al. Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites[J]. Composites Part B: Engineering, 2014, 58: 43-53.
    Zhou Y, Pervin F, Jeelani S, et al. Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers[J]. Journal of Materials Processing Technology, 2008, 198(1): 445-453.
    Tsantzalis S, Karapappas P, Vavouliotis A, et al. Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(4): 1076-1081.
    Jiang Z, Zhang H, Zhang Z, et al. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(11): 1762-1767.
    Cho J, Chen J Y, Daniel I M. Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement[J]. Scripta Materialia, 2007, 56(8): 685-688.
    Cho J, Daniel I M. Reinforcement of carbon/epoxy composites with multi-wall carbon nanotubes and dispersion enhancing block copolymers[J]. Scripta Materialia, 2008, 58(7): 533-536.
    Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
    Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
    Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology, 2008, 3(6): 327-331.
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
    Wang S, Tambraparni M, Qiu J, et al. Thermal expansion of graphene composites[J]. Macromolecules, 2009, 42(14): 5251-5255.
    Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12): 3884-3890.
    Cano M, Khan U, Sainsbury T, et al. Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains[J]. Carbon, 2013, 52: 363-371.
    Fang M, Wang K, Lu H, et al. Single-layer graphene nanosheets with controlled grafting of polymer chains[J]. Journal of Materials Chemistry, 2010, 20(10): 1982-1992.
    Kim H, Miura Y, Macosko C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441-3450.
    Steurer P, Wissert R, Thomann R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide[J]. Macromolecular Rapid Communications, 2009, 30(4-5): 316-327.
    Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
    Wang Y, Zhao Y, Bao T, et al. Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties[J]. Applied Surface Science, 2012, 258(22): 8603-8608.
    Chen W, Yan L, Bangal P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4): 1146-1152.
    Enoki T, Takai K. Unconventional electronic and magnetic functions of nanographene-based host-guest systems[J]. Dalton Transactions, 2008(29): 3773-3781.
    Cai W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J]. Science, 2008, 321(5897): 1815-1817.
    Wang S, Chia P J, Chua L L, et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets[J]. Advanced Materials, 2008, 20(18): 3440-3446.
    Zhang X, Fan X, Yan C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1543-1552.
    Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9): 2653-2659.
    Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Letters, 2009, 9(4): 1593-1597.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
    Shen X J, Liu Y, Xiao H M, et al. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins[J]. Composites Science and Technology, 2012, 72(13): 1581-1587.
    Khan S U, Kim J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon, 2012, 50(14): 5265-5277.
    Zaman I, Phan T T, Kuan H C, et al. Epoxy/graphene platelets nanocomposites with two levels of interface strength[J]. Polymer, 2011, 52(7): 1603-1611.
    Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578.
    Hussain M, Nakahira A, Niihara K. Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion[J]. Materials Letters, 1996, 26(3): 185-191.
    Yang J P, Yang G, Xu G, et al. Cryogenic mechanical behaviors of MMT/epoxy nanocomposites[J]. Composites Science and Technology, 2007, 67(14): 2934-2940.
    Salavagione H J, Martínez G, Ellis G. Recent advances in the covalent modification of graphene with polymers[J]. Macromolecular Rapid Communications, 2011, 32(22): 1771-1789.
    Fang M, Zhang Z, Li J, et al. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces[J]. Journal of Materials Chemistry, 2010, 20(43): 9635-9643.
    Ribeiro H, Silva W M, Rodrigues M T F, et al. Glass transition improvement in epoxy/graphene composites[J]. Journal of Materials Science, 2013, 48(22): 7883-7892.
    Chua P S. Dynamic mechanical analysis studies of the interphase[J]. Polymer Composites, 1987, 8(5): 308-313.
    Deng S, Ye L. Influence of fiber-matrix adhesion on mechanical properties of graphite/epoxy composites: III. Impact and dynamic mechanical properties[J]. Journal of Reinforced Plastics and Composites, 2000, 19(9): 689-703.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(607) PDF Downloads(620) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return