LI Ya-juan, MA Chang, KANG Jian-li, SHI Jing-li, SHI Qiang, WU Da-heng. Preparation of diameter-controlled multi-wall carbon nanotubes by an improved floating-catalyst chemical vapor deposition method. New Carbon Mater., 2017, 32(3): 234-241. doi: 10.1016/S1872-5805(17)60120-3
Citation: LI Ya-juan, MA Chang, KANG Jian-li, SHI Jing-li, SHI Qiang, WU Da-heng. Preparation of diameter-controlled multi-wall carbon nanotubes by an improved floating-catalyst chemical vapor deposition method. New Carbon Mater., 2017, 32(3): 234-241. doi: 10.1016/S1872-5805(17)60120-3

Preparation of diameter-controlled multi-wall carbon nanotubes by an improved floating-catalyst chemical vapor deposition method

doi: 10.1016/S1872-5805(17)60120-3
Funds:  Tianjin Research Program of Application Foundation and Advanced Technology (4JCYBJC20900);Natural Science Foundation of Tianjin Province (16JCQNJC06300);National Natural Science Foundation of China (51502201).
  • Accepted Date: 2017-06-28
  • Publish Date: 2017-06-28
  • Multi-wall carbon nanotubes (MWCNTs) with controlled diameters were synthesized by an improved-floating catalyst chemical vapor deposition method,using toluene and ferrocene as a carbon source and catalyst precursor,respectively.Ferrocene was sublimed in a heater and carried as a gas mixed with toluene vapor into a reactor where MWCNTs were formed.The effects of the sublimation temperature,hydrogen content in the gas mixture and gas flow rate on the diameter and diameter distribution of the CNTs formed were investigated.Results indicated that the CNT diameter distributions could be controlled by changing the sublimation temperature.The higher the sublimation temperature,the narrower the distribution of CNT diameters.The average CNT diameter decreased and levelled off with increasing hydrogen content in the gas mixture from 0 to 40 vol%.The CNT diameter decreased with increasing gas flow rate.
  • loading
  • Tessonnier J P, Su D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. ChemSusChem, 2011, 4(7):824-847.
    Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science, 1996, 274(5293):1701-1703.
    Endo M, Hayashi T, Kim Y A, et al. Applications of carbon nanotubes in the twenty-first century[J]. Philosophical Transactions the Royal Society A, 2004, 362(1823):2223-2238.
    Olek M, Ostrander J, Jurga S, et al. Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies[J]. Nano Letters, 2004, 4(10):1889-1895.
    Hilding J,Grulke E A Sinnott S B, et al. Sorption of butane on carbon multi-wall nanotubes at room temperature[J]. Langmuir, 2001, 17:7540-7544.
    Liu Y Z, Li Y F, Yang Y G, et al. Preparation and properties of graphene oxide/carbon fiber/phenolic resin composites[J]. New Carbon Materials, 2012, 27(5):377-384.
    Zhang J, Hu Y S, Tessonnier J P, et al. CNFs@CNTs:superior carbon for electrochemical energy storage[J]. Advanced Materials, 2008, 20(8):1450-1455.
    Vander Wal R L, Ticih T M, Curtis V E. Diffusion flame synthesis of single-walled carbon nanotubes[J]. Chemical Physics Letters, 2000, 323(3):217-223.
    Endo M, Hayashi T, Kim Y A, et al. Development and application of carbon nanotubes[J]. Japanese Journal of Applied Physics, 2006, 45(6R):4883-4892.
    Dai H. Carbon nanotubes:opportunities and challenges[J]. Surface Science, 2002, 500(1):218-241.
    Schnorr J M, Swager T M. Emerging applications of carbon nanotubes[J]. Chemical Material, 2011, 23(3):646-57.
    Sinnott S B, Andrews R. Carbon nanotubes:synthesis, properties, and applications[J]. Critical Reviews Solid State Material Science, 2001, 26(3):145-249.
    Mura kami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy[J]. Chemical Physics Letters, 2004, 385(3):298-303.
    Satishkumar B C, Govindaraj A, Rao C N R. Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures:role of the metal nanoparticles produced in situ[J]. Chemical Physics Letters, 1999, 307(3):158-62.
    Zhang Q, Huang J Q, Zhao M Q, et al. Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres[J]. Carbon, 2008, 46(8):1152-1158.
    Su J, Yu Y, Che R C. Aligned array of N2-encapsulated multilevel branched carbon nanotubes[J]. Applied Physics A, 2008, 90(1):135-139.
    Kamalakaran R, Terrones M, Seeger T, et al. Synthesis of thick and crystalline nanotube arrays by spray pyrolysis[J]. Applied physics letters, 2000, 77(21):3385-3387.
    Mayne M, Grobert N, Terrones M, et al. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols[J]. Chemical physics letters, 2001, 338(2):101-107.
    Gómez-Gualdrón D A, Balbuena P B. Characterization of carbon atomistic pathways during single-walled carbon nanotubes growth on supported metal nanoparticles[J]. Carbon, 2013, 57:298-309.
    Ohashi T, Ochiai T, Tokune T, et al. Increasing the length of a single-wall carbon nanotube forest by adding titanium to a catalytic substrate[J]. Carbon, 2013, 57:79-87.
    Zhang Q, Zhao M Q, Huang J Q, et al. Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition[J]. Carbon, 2009, 47:2600-2610.
    Cheng J, Zhou X P, Li F, et al. Preparation multi-walled carbon nanotubes by using[J]. Micronanoelectronic Technology, 2007, 44(7):111-112.
    Han D L, Zhao Y L, Zhao H B, et al. Prepared directional carbon nanotube array via chemical vapor deposition[J]. Acta Physica Sinica, 2007, 56(10):5958-5964.
    Koo's A A, Dowling M, Jurkschat K, et al. Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapor deposition[J]. Carbon, 2009, 47(1):30-37.
    Koós A A, Dillon F, Obraztsova E A, et al. Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes[J]. Carbon, 2010, 48(11):3033-3041.
    Koós A A, Nicholls R J, Dillon F, et al. Tailoring gas sensing properties of multi-walled carbon nanotubes by in situ modification with Si, P, and N[J]. Carbon, 2012, 50(8):2816-2823.
    Liu H, Zhang Y, Li R, et al. Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol-assisted chemical vapor deposition:effect of water vapor[J]. Applied Surf Science, 2010, 256(14):4692-4696.
    Singh C, Shaffer M S P, Windle A H. Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapor deposition method[J]. Carbon, 2003, 41(2):359-368.
    Meysami S S, Dillon F, Koós A A, et al. Aerosol-assisted chemical vapor deposition synthesis of multi-wall carbon nanotubes:I. mapping the reactor[J]. Carbon, 2013, 58:151-158.
    Zhang Q, Huang J Q, Zhao M Q, et al. Modulating the diameter of carbon nanotubes in array form via floating catalyst chemical vapor deposition[J]. Applied Physics A, 2009, 94(4):853-860.
    Castro C, Pinault M, Porterat D, et al. The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes[J]. Carbon, 2013, 61:585-594.
    Kuwana K, Saito K. Modeling CVD synthesis of carbon nanotubes:nanoparticle formation from ferrocene[J]. Carbon, 2005, 43:2088-95.
    Braun S, Romer F, Kraska T. Influence of the carrier gas molar mass on the particle formation in a vapor phase[J]. Journal Chemical Physics, 2009, 131:064308-064316.
    Turnbull A G. Thermochemistry of biscyclopentadienyl metal compounds[J]. Australian Journal of Chemistry, 1967, 20:2059-2067.
    Zhu H W, Cao A Y, Li X S, et al. Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature[J]. Applied Surface Science, 2001, 178:50-55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(573) PDF Downloads(589) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return