Aleksandrs Volperts, Galina Dobele, Aivars Zhurinsh, Darya Vervikishko, Evgeny Shkolnikov, Jurijs Ozolinsh. Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. New Carbon Mater., 2017, 32(4): 319-326. doi: 10.1016/S1872-5805(17)60125-2
Citation: Aleksandrs Volperts, Galina Dobele, Aivars Zhurinsh, Darya Vervikishko, Evgeny Shkolnikov, Jurijs Ozolinsh. Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. New Carbon Mater., 2017, 32(4): 319-326. doi: 10.1016/S1872-5805(17)60125-2

Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte

doi: 10.1016/S1872-5805(17)60125-2
Funds:  Authors express gratitude to project ERAF 2OP/2.11.10/14/APIA/VIAA/050.
  • Received Date: 2017-05-29
  • Accepted Date: 2017-08-31
  • Rev Recd Date: 2017-08-03
  • Publish Date: 2017-08-28
  • Wood-based activated carbons were synthesized in a two-stage thermochemical process using sodium hydroxide as an activator, and used as the electrode materials for supercapacitors with a sulfuric acid electrolyte. The dependence of pore structure parameters and the electrochemical properties of the activated carbons on the synthesis conditions was investigated. Results indicate that an electric double layer is formed within micropores while meso and macropores are responsible for ion transport. Excess activation under a high activation temperature and/or a high mass ratio of sodium hydroxide to carbonaceous material leads to high meso and macropore volumes, which increase electrolyte uptake and therefore decrease the specific capacitance based on cell mass. The optimum activated carbon is obtained at an activation temperature of 600℃ with a mass ratio of sodium hydroxide to carbonaceous material of 1.25.
  • loading
  • Yu Chabot A V, Zhang J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications[M]. Boca Raton: Taylor & Francis Group; 2013.
    Ariyanayagam Kumarappa D. Advanced Electrode Materials for Electrochemical Supercapacitors[D], Open Access Dissertations and Theses; 2012.
    Jayalakshmi M, Balasubramanian K. Simple capacitors to supercapacitors-An overview[J]. Int J Electrochim Sci, 2008, 3: 1196-1217.
    Burke A. R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim Acta, 2007, 53: 1083-1091.
    Lipka S M, Swartz C R. Electrochemical capacitor carbons[Z]. Energeia, 2007, 18(5): 1-4.
    Frackowiak E. Supercapacitors based on carbon materials and ionic liquids[J]. J Braz Chem Soc, 2006, 17(6): 1074-1082.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7: 845-854.
    Xu B, Chen Y, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J]. Mater Chem Phys, 2010, 124: 504-509.
    Linares-Solano A, Lillo-Rodenas MA, Marko-Lozar JP, et al. NaOH and KOH for preparing activated carbons used in energy an environmental applications[J]. Int J Energ Environ Econ, 2012, 20(4): 59-91.
    He X, Geng Y, Qiu J, Zheng S, et al. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J]. Carbon, 2010, 48: 1662-1669.
    He X, Li R, Qiu J, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon, 2012, 50: 4911-4921.
    Tamarkina Y V. Thermo-induced reactions of coal with alkali metal hydroxides[J]. Chem Chem Tech, 2010;162: 70-80(in Russian).
    Lillo-Rodenas M A Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH. An insight into the chemical activation mechanism[J]. Carbon, 2003, 41: 267-275.
    Bleda-Martinez M J, Macia-Agullo J A, Lozano-Castello D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials[J]. Carbon, 2005, 43(13): 2677-2684.
    Tamarkina Y V, Shendrik T G, Kucherenko V A, et al. Conversion of alexandriya brown coal into microporous carbons under alkali activation[J]. Journal of Siberian Federal University Chemistry, 2012, 5(1): 24-36(in Russian).
    Xu B, Wu F, Chen R, et al. Highly mesoporous and high surface area carbon: A high capacitance electrode material for EDLCs with various electrolytes[J]. Electrochim Commun, 2008, 10: 795-797.
    Zhang Z, Cui M, Lai Y, et al. Preparation and electrochemical characterization of activated carbons by chemical-physical activation[J]. J Cent South Univ Technol, 2009, 16: 91-95.
    Lota G, Centeno TA, Frackowiak E, et al. Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors[J]. Electrochim Acta, 2008, 53: 2210-2216.
    Cuhadaroglu D, Uygun OA. Production and characterization of activated carbon from a bituminous coal by chemical activation[J]. Afr J Biotechnol, 2008, 7(20): 3703-3710.
    Liao WC, Liao FS, Tsai CT, et al. Preparation of activated carbon for electric double layer capacitors[J]. China Steel Tec, 2012, 25: 36-41.
    Conway BE. Electrochemical Supercapacitors -Scientific Fundamentals and Technological Applications[M]. New York: Kluwer Acad., Plenum; 1999.
    Marsh H, Rodriguez-Reinoso F. Activated Carbon[M]. Amsterdam: Elsevier, 2006.
    Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production, a review[J]. Renew Sustain Energ Rev, 2007, 11: 1966-2005.
    Rodriguez-Reinoso F. Production and Applications of Activated Carbons[M]. In: Schuth F, Sing KSW, Weitkamp J, editors. Handbook of porous solids, Weinheim: Wiley-VCH; 2002, p. 1766-1782.
    Kalinicheva OA., Bogdanovich NI, Dobele GV. Pretreatment of wood raw materials in the synthesis of NaOH activated carbons[J]. Forest J, 2008, 2: 117-122(in Russian).
    Lillo-Rodenas MA, Marco-Lozar JP, Cazorla-Amoros D, et al. Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide[J]. J Anal Appl Pyrol, 2007, 80: 166-174.
    Mikova NM, Ivanov IP, Parfenov VA, et al. Influence of thermal and chemical modification conditions on properties of birchwood based carbon materials[J]. Siberian federal University J Chem, 2011, 4: 356-368(in Russian).
    Dobele G, Jakab E, Zoltan S, et al. Formation of nanoporous carbon materials in thermocatalytic synthesis conditions[J]. J Anal Appl Pyrol, 2013, 103: 173-180.
    Fryer JR. The micropore structure of disordered carbons determined by high-resolution electron-microscopy[J]. Carbon, 1981, 19: 431-439.
    Dubinin M. Microposous structures of carbon sorbents. General characteristics of micro- and supermicro pores of slit-like model[Z]. News of USSR Science Academy Chem, 1979, 8: 1691-1696(in Russian).
    Guryanov V V, Petuhova G A, Polyakov N S. Forecasting of microporous structure parameters and adsorption properties of activated carbons[Z]. News of Russian Science Academy Chem, 2001, 6: 933-939(in Russian).
    Kaneko K, Ishii C, Ruike M, et al. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons[J]. Carbon, 1992, 30(7): 1075-1088.
    Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. J Power Sources, 2007, 173: 822-828.
    Lozano-Castello D, Marko-Lozar J.P, Bleda-Martinez M J, et al. Relevance of porosity and surface chemistry of superactivated carbons in capacitors[J]. Tanso, 2013, 256: 41-47.
    Izmailova M Y, Rychagov A Y, Denshikov K K, et al. Electrochemical capacitor with ionic liquid as electrolyte[J]. Electrochemistry, 2009, 45(8): 1014-1015.
    Izmailova M Y. Development of supercapacitor with ionic liquid 1-methyl-3-butylimideazolium tetraboronfluorborate[D]. PhD dissertation, Russian D.I Mendeleev Chemical-Technological University. Moscow, Russia, 2010(in Russian).
    Bansal R, Goyal M. Activated Carbons Adsorption[M]. Boca Raton: CRP Press Taylor & Francis Group; 2005.
    Dobele G, Telyseva G, Dizhbite T, et al. Method for obtaining carbon-based sorbent[P]. Patent LV146832013.
    Dobele G, Dizhbite T, Gil M V, et al. Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture[J]. Biomass Bioenerg, 2012, 46: 145-154.
    Volperts A, Mironova-Ulmane N, Sildos I, et al. Structure of nanoporous carbon materials for supercapacitors[J]. IOP Conf Ser: Mater Sci Eng, 2012, 38: 1-5.
    Atamanyuk I N, Vervykishko D E, Grigorenko A V, et al. Influence of technological aspects of electrodes production on electrochemical characteristics of supercapacitors with protic electrolyte[J]. Electrochem Energ J, 2014.
    Shkolnikov E, Sidorova E, Malakhov A, et al. Estimation of pore size distribution in MCM-41-type silica using a simple desorption technique[J]. Adsorption, 2011, 17(6): 911-918.
    Lankin A V, Norman G E, Stegailov V V. Atomistic simulation of the interaction of an electrolyte with graphite nanostructures in perspective supercapacitors[J]. High Temp, 2010, 48(6): 837-845.
    Kowal J, Avaroglu E, Chamekh F, et al. Detailed analysis of the self-discharge of supercapacitors[J]. J Power Sources, 2011, 196: 573-579.
    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313: 1760-1763.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(411) PDF Downloads(372) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return