留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2015年  第30卷  第3期

Graphical Contents
2015, 30(3): .
摘要(335) PDF(485)
摘要:




三维石墨烯网络在超级电容器中的应用
李晨, 张熊, 王凯, 张海涛, 孙现众, 马衍伟
2015, 30(3): 193-206. doi: 10.1016/S1872-5805(15)60185-8
摘要(1047) PDF(1272)
摘要:
三维石墨烯网络(3DGNs)能够缩短电解质离子的扩散距离,提供快速电子输运通道,并能充当骨架以与赝电容材料进行复合,因而在超级电容器中得到了广泛应用。本文主要综述近年来三维石墨烯网络及其复合材料在超级电容器电极材料方面的的进展,论述提升三维石墨烯基超级电容器性能的途径,最后展望了未来三维石墨烯网络的前景。
碳纳米管纱的时间依赖电性能
H. E. Misak, S. Mall
2015, 30(3): 207-213. doi: 10.1016/S1872-5805(15)60186-X
摘要(632) PDF(1017)
摘要:
碳纳米管(CNTs)在电力转换领域具有潜在前景。本文表征碳纳米管纱随时间变化对电力的转换性能影响。通过建立I-V关系,结果表明存在3个区域,即线性、非线性和下降区域。线性区域表明呈现低且恒定电阻。当恒定电压处于I-V线性区域时,输出电流强度不随时间而改变。然而,当恒定电压处于非线性区域时,电流强度以指数级下降后随时间而趋平。在恒电流测试下,电压仅在电流强度处于非线性区时增加。依赖时间的导电性能可通过短路来理解。短路发生在非线性区域的碳纳米管纱中炽热部位,会导致热性能降低。通过热图像、热重分析、扫描电镜和能谱分析等手段对碳纳米管纱进行分析。
合成方式对单壁碳纳米管基电极材料结构及电化学性能的影响
王颖慧, 邱汉迅, 王钊, 李静, 申潇, 杨俊和
2015, 30(3): 214-221.
摘要(854) PDF(826)
摘要:
采用单壁碳纳米管作为合成电容器电极材料的基础原料,以氧化石墨烯提高单壁碳纳米管的分散性,以二氧化锰来增强其比电容,分别采用微波处理与传统水热法合成复合材料,重点探讨不同合成方式对电极材料结构及性能的影响。与传统水热法相比,微波法除了具有操作简便、加热时间短等优点外,合成的复合材料具有更均一的微观结构,且更加均匀的覆盖在碳质材料的表面,因而作为超级电容器电极材料时能表现出更优良的电学性能:在0.2A/g的电流密度下,其比电容达173F/g,比传统水热法合成的材料高出24.5%;具有更低的电荷转移电阻,仅为1.425Ω;更高的充放电稳定性,在20mV/s的扫描速率下循环1000次,电容损失率仅为3.74%。
热解炭中原位熔盐催化SiC纳米线的合成及表征
王富成, 赵雷, 方伟, 何漩, 梁峰, 陈辉, 陈欢, 杜星
2015, 30(3): 222-229. doi: 10.1016/S1872-5805(15)60187-1
摘要(807) PDF(1118)
摘要:
不加金属催化剂,以碱木素酚醛树脂(LPF)和硅粉作为原料在低温条件下合成SiC纳米线。利用SEM、TEM、XRD表征样品的形貌及显微结构,用热力学方法分析反应条件对SiC纳米线生长的影响。结果表明,SiC纳米线在1100 ℃左右开始生长,其由气-液-固生长机理控制,同时其生成温度比用商业酚醛树脂作为原料低。生成的SiC纳米线的直径为30~100 nm并沿晶面的[1 1 1]方向生长。碱木素酚醛树脂中的无机盐在热解炭化过程中原位形成熔盐并起着液相催化剂球滴的作用,促进SiC纳米线的生长,并提出合成SiC纳米线的生长机理模型。
微波法合成SiC纳米线及其光致发光性质
黄珊, 王继刚, 刘松, 张玥晨, 钱柳, 梁杰
2015, 30(3): 230-235.
摘要(613) PDF(715)
摘要:
以Si粉、SiO2粉和人造石墨为原料,在1480℃、4kW、80min的真空微波辐照条件下快速高效地合成SiC纳米线。利用SEM、TEM、XRD等对所得产物的微观结构解析表明,在未使用催化剂的条件下,基于气固(VS)机制可成功制备出β型SiC。根据坩埚中的部位不同,所得SiC呈现出不同的形貌。坩埚上层的产物呈亮绿色,较为纯净,主要为直径约150nm的纳米棒,并含有部分微米级SiC晶粒,表面氧化迹象不明显。其余部分产物呈灰绿色,主要是直径为20~50nm的SiC/SiO2同轴纳米线(表层的SiO2厚度约2nm),并夹杂有未反应完全的石墨和SiO2。利用波长为240nm的激发光分别对SiC纳米棒和同轴纳米线的光致发光特性的测试表明,两者均可观察到峰位在390nm左右的发射峰,此结果与所报道的β-SiC纳米材料的发光性能相比,蓝移程度更高。
SiOC陶瓷涂层改善炭纤维的抗氧化性能
夏克东, 吕春祥, 杨禹
2015, 30(3): 236-243. doi: 10.1016/S1872-5805(15)60188-3
摘要(837) PDF(699)
摘要:
以乙烯基改性的硅氧烷作为溶胶凝胶前驱体在炭纤维表面制备出SiOC陶瓷涂层。采用扫描电镜、X-射线衍射、X-射线光电子能谱、拉曼光谱以及热重分析对涂层进行表征。炭纤维的力学性能通过单丝拉伸强度测试研究。结果表明,无定型的SiOC涂层由SiCxO4-x结构单元和自由碳相组成。SiOC涂层可改善炭纤维的抗氧化性能。涂层脱落与表面裂纹导致纤维拉伸强度降低以及weibull模量增加。与未涂层纤维相比,具有200nm涂层厚度的炭纤维初始氧化温度可提高150℃,其单丝拉伸强度为2.32GPa。
土豆淀粉基杏仁状炭及其非酶检测蔗糖
Soma Das, Mitali Saha
2015, 30(3): 244-251. doi: 10.1016/S1872-5805(15)60189-5
摘要(568) PDF(841)
摘要:
以土豆淀粉为原料,通过先在400-500 ℃空气中炭化,再于800 ℃裂解制备出杏仁状炭(CNA)颗粒,并组装成高灵敏度和选择性的非酶蔗糖传感器。采用扫描电镜、X射线衍射仪、X射线光电子能谱仪、原子力和荧光显微镜对样品进行表征。通过循环伏安、微分脉冲伏安法及线性扫描法在酸性溶液中对蔗糖进行电化学检测。结果表明,这种新传感器对蔗糖氧化呈现良好的响应,具有宽的线性范围(R2 = 0.996 79),高灵敏度(~41.737 25±0.01 μAμM-1·cm-2)、低的检测限(1 μmol/L),高的稳定性及短的响应时间(9 s)。
炭化米糠经臭氧活化制备活性炭及其去除Cr(VI)离子
Sivaraju Sugashini, Kadhar Mohamed Meera Sheriffa Begum
2015, 30(3): 252-261. doi: 10.1016/S1872-5805(15)60190-1
摘要(806) PDF(874)
摘要:
以臭氧为活化剂,炭化的米糠为原料制备出活性炭。采用氮吸附、SEM-EDAX 和FT-IR对样品进行表征。活性炭的比表面积由活化前的20 m2/g增加到380 m2/g。在臭氧活化过程中,吸附在炭材料上的二氧化硅变疏松,从而导致碳逸出。臭氧同时以氧分子和原子形式存在于炭表面。氧原子,作为强氧化剂,将炭表面氧化成酸性官能团如羧基、酮基和酚基。采用该活性炭吸附Cr (VI) 离子,Cr (VI) 离子的最大去除率(94%)的条件为:pH值2.0、浓度100 mg/L、吸附量0.2 g,时间2.5 h及转速300 r/min。采用吸附平衡和动力学模型探讨吸附机理,结果表明,吸附等温线符合Freundlich方程,吸附速率符合准二级动力学方程。吸附是自发的放热反应,可能与NaOH脱落而恢复Cr和碳有关。
石墨泡沫/共晶盐复合相变材料的制备及其热物性
郭茶秀, 胡高林, 罗志军
2015, 30(3): 262-268.
摘要(589) PDF(1116)
摘要:
为强化二元硝酸共晶盐(NaNO3/KNO3)的导热性能,在共晶盐中添加石墨泡沫制出石墨泡沫/共晶盐复合相变材料;对共晶盐和复合相变材料的相变特性进行差示热分析;对石墨泡沫的导热系数和复合相变材料的有效导热系数进行测定,并用拉曼光谱对复合相变材料进行稳定性分析。结果表明,石墨基复合材料可以用熔融浸渗法制备,且制备样品的稳定性能良好。复合相变材料的相变温度(221.3℃)与共晶盐(222.4℃)相似,其相变潜热与基于复合材料中共晶盐含量的潜热值相近(下降3.74%)。受石墨骨架高热导率的影响,复合相变材料的导热能力明显提高,与纯共晶盐比增加了102倍。
苯酚在活性炭复合材料结构化固定床上的吸附动力学
邵琰, 鄢瑛, 张会平
2015, 30(3): 269-274.
摘要(787) PDF(1096)
摘要:
以不锈钢微纤、粉状活性炭和粘合剂为原料,采用湿法造纸和烧结工艺制备出纸状微纤包覆活性炭复合材料;在固定床进出口端分别装填颗粒活性炭(13 cm)和微纤包覆活性炭复合材料(2 cm)形成结构化固定床,测定苯酚在颗粒活性炭固定床和结构化固定床上的吸附透过曲线;考察不同实验条件下苯酚在结构化固定床上的吸附动力学,并采用Yoon模型和无效层厚度理论进行理论分析。结果表明,相对于颗粒活性炭固定床,苯酚在结构化固定床上的吸附透过曲线斜率明显增加,苯酚在结构化固定床上的吸附透过曲线斜率随着进口初始浓度的提高或流体流量的增大而增大;根据无效层厚度理论和Yoon模型分别分析计算,苯酚在结构化固定床上的无效层厚度相对于颗粒活性炭固定床的减少了14%,Yoon模型中的吸附速率常数k值明显增加。因此,采用基于微纤包覆活性炭复合材料的结构化固定床,可以强化床层上的吸附传质过程,并提高吸附床层利用率。
沉积在核石墨IG-110基体上的热解炭涂层微观结构
冯尚蕾, 杨迎国, 白朔, 许力, 杨新梅, 夏汇浩, 周兴泰
2015, 30(3): 275-281.
摘要(768) PDF(803)
摘要:
采用化学气相沉积技术,以甲烷作为碳源,在核石墨IG-110基体上制备层状热解炭涂层。利用偏光显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及同步辐射掠入射X 射线衍射(GI-XRD)研究热解炭涂层的微观结构和生长特性。结果表明,热解炭涂层具有大锥体、小锥体和再生锥体三种生长锥微观结构,热解炭片层间结合紧密,生长锥间结合密实。热解炭涂层存在光滑层和再生层两种织构,每种织构都含有两种晶面间距不同的相结构,平滑层主要含有低石墨化度相,而再生层主要含有高石墨化度相。热解炭涂层致密的微观结构和仅存在的纳米级别的微孔使其可以作为气体阻隔涂层。
石墨表面熔盐电镀制备铝金属层
曹瑞雄, 陶则超, 王宏宝, 郭全贵
2015, 30(3): 282-288.
摘要(846) PDF(1187)
摘要:
采用AlCl3-NaCl-KCl混合熔盐(质量比8:1:1)在石墨表面电镀得到铝金属镀层/石墨复合材料。通过调节电流密度和电镀时间可实现对铝金属镀层厚度和表面形貌的控制。在相同电流密度(1.06 A/dm2)下,电镀时间在240 min以内时,电镀时间越长,镀层越厚(最大厚度140 μm),但电镀时间达到300 min时,铝金属镀层表面出现枝状结构;电流密度越大铝金属沉积速率越快,在相同电镀时间(120 min)时,电流密度达到3.28 A/dm2,得到铝镀层最厚(148 μm)。铝金属镀层与石墨基体间的附着强度较高,铝金属层可提高复合材料的热导率,热导率从最初的115.7 W/(m·K)提高至199.0 W/(m·K)。