[1]
|
Tang J H, Cai J W, Zhou M K. The status of researching and developing in high performance concrete [J]. Science and Technology of Overseas Building Materials, 2006, 27(3): 11-15.
|
[2]
|
Boulekbache B, Hamrat M, Chemrouk M, et al. Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete [J]. Construction and Building Materials, 2012, 27(1): 6-14.
|
[3]
|
Sun M, Liu Q, Li Z, et al. A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading [J]. Cement and Concrete Research, 2000, 30(10): 1593-1595.
|
[4]
|
Chung D D L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing [J]. Carbon, 2012, 50(9): 3342-3353.
|
[5]
|
Luo J L, Duan Z D, Zhao T J, et al. Hybrid effect of carbon fiber on piezoresistivity of carbon nanotube cementbased composite [J]. Advanced Mater Res, 2011, 143-144(1): 639-643.
|
[6]
|
Bahar D, Salih Y. Thermoelectric behavior of carbon fiber reinforced light weight concrete with mineral admixtures [J]. New Carbon Materials, 2008, 23(1): 21-24. (Bahar D, Salih Y. 炭纤维增强轻质矿粉泥混土的热电行为 [J]. 新型炭材料, 2008, 23(1): 21-24)
|
[7]
|
Li H, Xiao H G, Ou J P. Effect of compressive strain on electrical resistivityof carbon black-filled cement-based composites [J]. Cement and Concrete Composites, 2006, 28(9): 824-828.
|
[8]
|
Chung D D L. Electrically conductive cement-based materials [J]. Advances in Cement Research, 2004, 16(4): 167-176.
|
[9]
|
Li K Z, Wang C, Li H J, et al. Development and study of carbon fiber reinforced cement composites [J]. Materials Review, 2006, 20(5): 85-88.
|
[10]
|
Li G Y, Wang P M. Microstructure and mechanical properties of carbon nanotubes cement matrix composites [J]. Journal of The Chinese Ceramic Society, 2005, 33(1): 105-108.
|
[11]
|
Lao Y S, Zhang L, Wang X P, et al Research progress in effect of nanoparticles on the performance of cement-based materials [J]. Materials Review, 2014, 28(3): 93-96.
|
[12]
|
YANG Quan-hong. Dreams may come: from fullerene,carbon nanotube to graphene [J]. New Carbon Material, 2011, 26(1): 1-4. (杨全红. "梦想照进现实"——从富勒烯、碳纳米管到石墨烯 [J]. 新型炭材料, 2011, 26(1): 1-4.)
|
[13]
|
Du H J, Pang S D. Transport of water and chloride ion in cement composites modified with graphene nanoplatelet [J]. Key Engineering Materials, 2015, 629-630(1): 162-167.
|
[14]
|
Yang Y G, Chen Ch M, Wen Y F, et al. Oxidized graphene and graphene based polymer composites [J]. New Carbon Materials, 2008, 23(3): 193-200. (杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合 [J]. 新型炭材料, 2008, 23(3): 193-200.)
|
[15]
|
Chen C M, Yang Q H, Yang Y G, et al. Self-assembled free-standing graphite oxide membrane [J]. Adv Mater, 2009, 21(29): 3007-3011.
|
[16]
|
Nawa M N A T. Effect of fly ash on the kinetics of portland cement hydration at different curing temperatures [J]. Cement and Concrete Research, 2011, 41(6): 579-589.
|
[17]
|
Snelson D G, Wild S, O'Farrell M. Heat of hydration of Portland Cement-Metakaolin-Fly ash (PC-MK-PFA) blends [J]. Cement and Concrete Research, 2008, 38(6): 832-840.
|
[18]
|
Langan B W, Weng K, Ward M A. Effect of silica fume and fly ash on heat of hydration of Portland cement [J]. Cement and Concrete Research, 2002, 32(7): 1045-1051.
|
[19]
|
ZENG Q, LI K, FEN-chong T, et al. Pore structure characterization of cement pastes blended with high-volume fly-ash [J]. Cement and Concrete Research, 2012, 42(1): 194-204.
|
[20]
|
Provis J L, Myers R J, White C E, et al. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders [J]. Cement and Concrete Research, 2012, 42(6): 855-864.
|
[21]
|
Neithalath N, Sumanasooriya M S, Deo O. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction [J]. Materials Characterization, 2010, 61(8): 802-813.
|
[22]
|
Constantinides G, Ulm F. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling [J]. Cement and Concrete Research, 2004, 34(1): 67-80.
|