留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陈化时间对干喷凝胶纺聚丙烯腈纤维结构和环化反应的影响

李晓鹏 索习东 刘耀东 李永红

李晓鹏, 索习东, 刘耀东, 李永红. 陈化时间对干喷凝胶纺聚丙烯腈纤维结构和环化反应的影响[J]. 新型炭材料, 2019, 34(1): 9-18. doi: 10.1016/S1872-5805(19)60001-6
引用本文: 李晓鹏, 索习东, 刘耀东, 李永红. 陈化时间对干喷凝胶纺聚丙烯腈纤维结构和环化反应的影响[J]. 新型炭材料, 2019, 34(1): 9-18. doi: 10.1016/S1872-5805(19)60001-6
LI Xiao-peng, SUO Xi-dong, LIU Yao-dong, LI Yong-hong. Effect of gelation time on the microstructures, mechanical properties and cyclization reactions of dry-jet gel-spun polyacrylonitrile fibers[J]. NEW CARBON MATERIALS, 2019, 34(1): 9-18. doi: 10.1016/S1872-5805(19)60001-6
Citation: LI Xiao-peng, SUO Xi-dong, LIU Yao-dong, LI Yong-hong. Effect of gelation time on the microstructures, mechanical properties and cyclization reactions of dry-jet gel-spun polyacrylonitrile fibers[J]. NEW CARBON MATERIALS, 2019, 34(1): 9-18. doi: 10.1016/S1872-5805(19)60001-6

陈化时间对干喷凝胶纺聚丙烯腈纤维结构和环化反应的影响

doi: 10.1016/S1872-5805(19)60001-6
基金项目: 中科院百人计划;山西省基金项目(201601D011020).
详细信息
    通讯作者:

    刘耀东.E-mail:liuyd@sxicc.ac.cn;李永红.E-mail:liyh@sxicc.ac.cn

  • 中图分类号: TQ342+.31

Effect of gelation time on the microstructures, mechanical properties and cyclization reactions of dry-jet gel-spun polyacrylonitrile fibers

Funds: One Hundred Person Project of CAS, China; Natural Science Foundation of Shanxi Province (201601D011020).
  • 摘要: 通过凝胶纺丝可以制备高度取向的聚丙烯腈(PAN)纤维及其炭纤维。研究了聚丙烯腈的二甲基亚砜(DMSO)和二甲基甲酰胺(DMF)溶液在干喷凝胶纺丝中的凝胶化过程对纤维结构和性能的影响,包括低温凝胶陈化时间对PAN纤维热牵伸比、纤维物理结构、力学性能及环化反应的影响。结果表明凝胶陈化前期(0-10天),纤维结构和性能变化较显著,且DMSO体系的变化较DMF体系更为显著;随着陈化时间继续从10天延长到40天,其影响较弱。随着低温陈化时间的延长,PAN纤维的最大牵伸比、强度、模量、结晶取向和结晶度逐渐增加,氮气下环化起始温度降低且反应焓变增加。
  • Park J H, Rutledge G C. 50th Anniversary Perspective:advanced polymer fibers:high performance and ultrafine[J]. Macromolecules, 2017, 50(15):5627-5642.
    Chang H B, Luo J, Gulgunje P V, et al. Structural and functional fibers[J].Annual Review of Materials Research, 2017, 47:331-359.
    Newcomb B A. Processing, structure, and properties of carbon fibers[J]. Composites Part a-Applied Science and Manufacturing, 2016, 91:262-282.
    Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers[J]. Polymer Reviews, 2012, 52(3-4):234-258.
    Choi D, Kil H-S, Lee S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon, 2019:610-649.
    Liu Q, Wang Y X, Niu F X, et al. Spinnability of polyacrylonitrile gel dope in the mixed solvent of dimethyl sulfoxide/dimethylacetamide and characterization of the nascent fibers[J]. Polymer Science Series A, 2018, 60(5):638-646.
    Okuda H, Young R J, Tanaka F, et al. Tensile failure phenomena in carbon fibres[J]. Carbon, 2016, 107:474-481.
    Ellringmaan T, Wilms C, Warnecke M, et al. Carbon fiber production costing:a modular approach[J]. Textile Research Journal, 2016, 86(2):178-190.
    Chae H G, Newcomb B A, Gulgunje P V, et al. High strength and high modulus carbon fibers[J]. Carbon, 2015, 93:81-87.
    Heydari M, Mohammad N. The rheological, mechanical and templating effects of graphene oxide nanosheets in filled gel spun polyacrylonitrile[J]. Iranian Polymer Journal, 2018, 27(10):775-784.
    Liu Y, Chae H G, Choi Y H, et al. Preparation of low density hollow carbon fibers by bi-component gel-spinning method[J]. Journal of Materials Science, 2015, 50(10):3614-3621.
    Newcomb B A, Gulgunje P V, Gupta K, et al. Processing, structure, and properties of gel spun PAN and PAN/CNT fibers and gel spun PAN based carbon fibers[J]. Polymer Engineering and Science, 2015, 55(11):2603-2614.
    Fang X, Wyatt T, Shi J, et al. Fabrication of high-strength polyoxymethylene fibers by gel spinning[J]. Journal of Materials Science, 2018, 53(16):11901-11916.
    Henry C K, Palmese G R, Alvarez N J. The evolution of crystalline structures during gel spinning of ultra-high molecular weight polyethylene fibers[J]. Soft Matter, 2018, 14(44):8974-8985.
    Al Aiti M, Jehnichen D, Fischer D, et al. On the morphology and structure formation of carbon fibers from polymer precursor systems[J]. Progress in Materials Science, 2018, 98:477-551.
    Frank E, Steudle L M, Ingildeev D, et al. Carbon fibers:precursor systems, processing, structure, and properties[J]. Angewandte Chemie-International Edition, 2014, 53(21):5262-5298.
    Liu S, Jiang H, Du W, et al. Spinnability in pre-gelled gel spinning of polyacrylonitrile precursor fibers[J]. Fibers and Polymers, 2012, 13(7):846-849.
    Li W, Hao J, Zhou P, et al. Solvent solubility parameter dependent homogeneity and sol-gel transitions of concentrated polyacrylonitrile solutions[J]. Journal of Applied Polymer Science, 2017, 134(41):45405-45414.
    Tan L, Wan A, Pan D. Pregelled gel spinning of polyacrylonitrile precursor fiber[J]. Materials Letters, 2011, 65(5):887-890.
    Lu C, Rawat P, Louder N, et al. Properties and structural anisotropy of gel-spun lignin/poly(vinyl alcohol) fibers due to gel aging[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(1):679-689.
    Holloway J L, Lowman A M, Palmese G R. Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions[J]. Acta Biomaterialia, 2013, 9(2):5013-5021.
    Tanigami T, Murase K, Yamaura K, et al. Aging of poly(vinyl alcohol) gels perpared from dimethylsulfoxide water solutions[J]. Polymer, 1994, 35(12):2573-2578.
    Liu Y, Chae H G, Kumar S. Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part Ⅲ:Effect of stabilization conditions on carbon fiber properties[J]. Carbon, 2011, 49(13):4487-4496.
    Liu Y, Chae H G, Kumar S. Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I:Effect of carbon nanotubes on stabilization[J]. Carbon, 2011, 49(13):4466-4476.
    Hao J, Li W, Suo X, et al. Highly isotactic (> 60%) polyacrylonitrile-based carbon fiber:Precursor synthesis, fiber spinning, stabilization and carbonization[J]. Polymer, 2018, 157:139-150.
    Hao J, Liu Y, Lu C. Effect of acrylonitrile sequence distribution on the thermal stabilization reactions and carbon yields of poly(acrylonitrile-co-methyl acrylate)[J]. Polymer Degradation and Stability, 2018, 147:89-96.
    Li Y, Yu Y, Liu Y, et al. Interphase development in polycarylonitrile/SWNT nanocomposite and Its effect on cyclization and carbonization for tuning carbon structures[J]. ACS Apply Nano Materials, 2018, 1(7):3105-3113.
  • 加载中
图(1)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  68
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 录用日期:  2019-02-20
  • 修回日期:  2019-01-30
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回