留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响

王剑 郭丽娜 林万明 陈津 张帅 陈少达 甄甜甜 张宇阳

王剑, 郭丽娜, 林万明, 陈津, 张帅, 陈少达, 甄甜甜, 张宇阳. 石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响[J]. 新型炭材料, 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0
引用本文: 王剑, 郭丽娜, 林万明, 陈津, 张帅, 陈少达, 甄甜甜, 张宇阳. 石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响[J]. 新型炭材料, 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0
WANG Jian, GUO Li-na, LIN Wan-ming, CHEN Jin, ZHANG Shuai, CHEN Shao-da, ZHEN Tian-tian, ZHANG Yu-yang. The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites[J]. NEW CARBON MATERIALS, 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0
Citation: WANG Jian, GUO Li-na, LIN Wan-ming, CHEN Jin, ZHANG Shuai, CHEN Shao-da, ZHEN Tian-tian, ZHANG Yu-yang. The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites[J]. NEW CARBON MATERIALS, 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0

石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响

doi: 10.1016/S1872-5805(19)60009-0
详细信息
    作者简介:

    王剑,博士研究生.E-mail:466868228@qq.com

    通讯作者:

    陈津,教授.E-mail:chenjin2013815@126.com

  • 中图分类号: TB333

The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites

  • 摘要: 采用电场压力激活辅助合成工艺(Field activated and pressure assisted synthesis process (FAPAS))制备铜基石墨烯复合材料,研究不同的石墨烯含量对铜基体材料的微观结构和性能的影响机理。结果表明,石墨烯的添加能提高材料的位错密度、阻止位错在晶界移动,硬度提升17.6%;由于石墨烯添加量少,对铜基复合材料的位错密度和晶粒尺寸影响有限,片状的石墨烯能有效地弥补制备产生的缺陷,使材料的热导率和电导率分别提升2.9%和4.4%;石墨烯的添加使腐蚀电池两极间的电位差减小,降低了铜离子在氧化膜中的扩散能力,使复合材料的阻抗提升5.3%,腐蚀电流密度下降28.2%,有效地提升了铜基复合材料的耐腐蚀性能。铜基石墨烯复合材料的石墨烯最佳添加量为0.5 wt.%。
  • Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6:183-191.
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321:385-388.
    Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letter, 2008, 8:902-907.
    Lee C, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2012, 5887:358-338.
    Guo X H, Song K X, Liang S H, et al. Effect of the thermal expansion characteristics of reinforcements on the electrical wear performance of copper matrix composite[J]. Tribology Transactions, 2014, 57(2):283-291.
    Leon C A, Rodriguez-Ortiz G, Nanko M, et al. Pulsed electric current sintering of Cu matrix composites reinforced with plain and coated alumina powders[J]. Powder Technology, 2014, 252(1):1-7.
    Azem S, Nechiche M, Taibi K. Development of copper matrix composite reinforced with FeAl particles produced by combustion synthesis[J]. Powder Technology, 2011, 208(2):515-520.
    Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scripta Materialia, 2015, 109:72-75.
    Rajkovic V, Bozic D, Stasic J, et al. Processing, characterization and properties of copper-matrix composites strengthened by low amount of alumina particles[J]. Powder Technology, 2014, 268:392-400.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
    Gupta A, Chen G, Joshi P, et al. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12):2667-2673.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
    Goli P, Ning H, Li X, et al. Thermal properties of graphene-copper-graphene heterogeneous films[J]. Nano Letters, 2014, 14(3):1497-1503.
    Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics, 1998, 81(10):6692-6699.
    Gao X, Yue H Y, Guo E, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology, 2016, 301:601-607.
    Chen F Y, Ying J M, Wang Y F, et al. Effects of graphene content on the microstructure and properties of copper matrix Composites[J]. Carbon, 2016, 96:836-842.
    Wei J N, Li Z B, Han F S. Thermal mismatch dislocations in macroscopic graphite particle-reinforced metal matrix composites studied by internal friction[J]. Physica Status Solidi, 2015, 191(1):125-136.
  • 加载中
图(1)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  23
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-30
  • 录用日期:  2019-04-30
  • 修回日期:  2019-03-30
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回