留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性氧化石墨烯包覆的双增强相变复合填料的制备及其导热性能

冯静 刘占军 张东卿 何钊 陶则超 郭全贵

冯静, 刘占军, 张东卿, 何钊, 陶则超, 郭全贵. 改性氧化石墨烯包覆的双增强相变复合填料的制备及其导热性能. 新型炭材料, 2019, 34(2): 188-195. doi: 10.1016/S1872-5805(19)60011-9
引用本文: 冯静, 刘占军, 张东卿, 何钊, 陶则超, 郭全贵. 改性氧化石墨烯包覆的双增强相变复合填料的制备及其导热性能. 新型炭材料, 2019, 34(2): 188-195. doi: 10.1016/S1872-5805(19)60011-9
FENG Jing, LIU Zhan-jun, ZHANG Dong-qing, HE Zhao, TAO Ze-chao, GUO Quan-gui. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications. New Carbon Mater., 2019, 34(2): 188-195. doi: 10.1016/S1872-5805(19)60011-9
Citation: FENG Jing, LIU Zhan-jun, ZHANG Dong-qing, HE Zhao, TAO Ze-chao, GUO Quan-gui. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications. New Carbon Mater., 2019, 34(2): 188-195. doi: 10.1016/S1872-5805(19)60011-9

改性氧化石墨烯包覆的双增强相变复合填料的制备及其导热性能

doi: 10.1016/S1872-5805(19)60011-9
基金项目: 国家自然科学基金(51303198);中国科学院青年创新促进会资助(2017205).
详细信息
    作者简介:

    冯静,硕士研究生.E-mail:fengjingchd@163.com

    通讯作者:

    张东卿,副研究员.E-mail:dongqingzh@sxicc.ac.cn

  • 中图分类号: TB33

Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications

Funds: National Natural Science Foundation of China (51303198); Youth Innovation Promotion Association of CAS (2017205).
  • 摘要: 采用乳液混合法制备了改性氧化石墨烯(m-GO)包覆的核壳相变复合填料(P@m-GO),并填充于硅橡胶(SIR)基体中得到导热界面材料(P@m-GO/SIR)。主要研究了填料添加量对界面材料热性能和力学性能的影响。结果表明,双增强相变复合填料可以保证界面材料柔顺性,得到的界面材料P@m-GO/SIR具有较高的热导率和潜热值。当添加60 wt.% P@m-GO时,界面材料P@m-GO/SIR的热导率相较纯硅橡胶提高了11倍,为1.248 W·m-1·K-1,潜热值可达87.7 J·g-1。同时,界面材料的压缩弹性模量仅为1.01 MPa。
  • Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4):163-174.
    Razeeb K M, Dalton E, Cross G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews, 2018, 63(1):1-21.
    Cui T, Li Q, Xuan Y, et al. Multiscale simulation of thermal contact resistance in electronic packaging[J]. International Journal of Thermal Sciences, 2014, 83(Supplement C):16-24.
    Hansson J, Nilsson T M J, Ye L, et al. Novel nanostructured thermal interface materials:A review[J]. International Materials Reviews, 2018, 63(1):22-45.
    Wang Y, Cao Y, Zhou K, et al. Assessment of self-assembled monolayers as high-performance thermal interface materials[J]. Advanced Materials Interfaces, 2017, 4(15):1700355.
    Huang Y, Hu J, Yao Y, et al. Manipulating orientation of silicon carbide nanowire in polymer composites to achieve high thermal conductivity[J]. Advanced Materials Interfaces, 2017, 4(17):1700446.
    Zhang P, Zeng J, Zhai S, et al. Thermal properties of graphene filled polymer composite thermal interface materials[J]. Macromolecular Materials and Engineering, 2017, 302(9):1700068.
    Cai D, Neyer A. Large scale silicone-rubber-based optical interconnect packaged with FR4[J]. Journal of Microelectromechanical Systems, 2010, 19(6):1362-1369.
    Bhanushali S, Ghosh P C, Simon G P, et al. Copper nanowire-filled soft elastomer composites for applications as thermal interface materials[J]. Advanced Materials Interfaces, 2017, 4(17):1700387.
    Chen H, Wei H, Chen M, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes[J]. Applied Surface Science, 2013, 283:525-531.
    Raza M A, Westwood A, Brown A, et al. Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications[J]. Carbon, 2011, 49(13):4269-4279.
    Zhang Q, Feng J. Difunctional olefin block copolymer/paraffin form-stable phase change materials with simultaneous shape memory property[J]. Solar Energy Materials and Solar Cells, 2013, 117:259-266.
    Ma S, Song G, Li W, et al. UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin[J]. Solar Energy Materials and Solar Cells, 2010, 94(10):1643-1647.
    Yang W, Zhang L, Guo Y, et al. Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity[J]. Journal of Materials Science, 2018, 53(4):2566-2575.
    Huang Y R, Chuang P H, Chen C L. Molecular-dynamics calculation of the thermal conduction in phase change materials of graphene paraffin nanocomposites[J]. International Journal of Heat and Mass Transfer, 2015, 91:45-51.
    Yuan K, Wang H, Liu J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2015, 143:29-37.
    Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J]. Energy Conversion and Management, 2013, 67(Supplement C):275-282.
    Li Y F, Liu Y Z, Chen S, et al. Self-templating synthesis nitrogen and sulfur co-doped hierarchical porous carbons derived from crab shells as a high-performance metal-free oxygen electroreduction catalys[J]. Materials Today Energy, 2018, 10:388-395.
    Lai L, Chen L, Zhan D, et al. One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties[J]. Carbon, 2011, 49(10):3250-3257.
    Liu C, Chen M, Zhou D, et al. Effect of filler shape on the thermal conductivity of thermal functional composites[J]. Journal of Nanomaterials, 2017, 2017:1-15.
  • 加载中
图(1)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  146
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-01
  • 录用日期:  2019-04-30
  • 修回日期:  2019-03-20
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回