留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构稳定、散热量大的柔性纳米碳管@热解炭复合纸的制备

刘雪松 付前刚 王慧 魏亚龙 宋强

刘雪松, 付前刚, 王慧, 魏亚龙, 宋强. 结构稳定、散热量大的柔性纳米碳管@热解炭复合纸的制备[J]. 新型炭材料, 2019, 34(5): 417-425. doi: 10.1016/S1872-5805(19)60023-5
引用本文: 刘雪松, 付前刚, 王慧, 魏亚龙, 宋强. 结构稳定、散热量大的柔性纳米碳管@热解炭复合纸的制备[J]. 新型炭材料, 2019, 34(5): 417-425. doi: 10.1016/S1872-5805(19)60023-5
LIU Xue-song, FU Qian-gang, WANG Hui, WEI Ya-long, SONG Qiang. A flexible carbon nanotube-pyrolytic carbon sandwich paper with a stable structure and high heat-dissipation capacity[J]. NEW CARBON MATERIALS, 2019, 34(5): 417-425. doi: 10.1016/S1872-5805(19)60023-5
Citation: LIU Xue-song, FU Qian-gang, WANG Hui, WEI Ya-long, SONG Qiang. A flexible carbon nanotube-pyrolytic carbon sandwich paper with a stable structure and high heat-dissipation capacity[J]. NEW CARBON MATERIALS, 2019, 34(5): 417-425. doi: 10.1016/S1872-5805(19)60023-5

结构稳定、散热量大的柔性纳米碳管@热解炭复合纸的制备

doi: 10.1016/S1872-5805(19)60023-5
基金项目: 国家自然科学基金(51521061,51502242);"111"引智计划(B08040);西北工业大学凝固技术国家重点实验室(142-TZ-2016).
详细信息
    作者简介:

    刘雪松,博士研究生.E-mail:liuxs@mail.nwpu.edu.cn

    通讯作者:

    付前刚,教授.E-mail:fuqiangang@nwpu.edu.cn

  • 中图分类号: TQ127.1+1

A flexible carbon nanotube-pyrolytic carbon sandwich paper with a stable structure and high heat-dissipation capacity

Funds: National Natural Science Foundation of China under the grant numbers (51502242, 51521061); "111" Project under a grant number (B08040) and Research Fund of State Key Laboratory of Solidification Processing (NWPU); China under a grant number (142-TZ-2016).
  • 摘要: 通过在纳米碳管纸上沉积热解炭层的方法来提升其结构稳定性并保持其优异的性能。这种纳米碳管@热解炭复合纸可以被切割成任意形状而无开口式破裂。在500次往复弯曲后,其内部结构仍保持完整。弯折前后,复合纸的拉伸强度从8.58 MPa提升至11.41 MPa,这是因为内部纳米碳管取向更加趋于一致。复合纸的热扩散率和散热量几乎保持不变,并接近同尺度的铜箔,这归功于纳米碳管增强的热解炭层及内部纳米碳管网络在变形过程中没有损伤。故这种复合纸有望作为一种轻质柔性的散热材料。
  • Inoue Y, Suzuki Y, Minami Y, et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs[J]. Carbon, 2011, 49(7): 2437-2443.
    Lee Y, Le V T, Jeong-Gyun K, et al. Versatile, high-power, flexible, stretchable carbon nanotube sheet heating elements tolerant to mechanical damage and severe deformation[J]. Advanced Functional Materials, 2018, 28(8).
    Feng W, Qin M, Feng Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon, 2016, 109:575-597.
    Ji T, Feng Y, Qin M, et al. Thermal conducting properties of aligned carbon nanotubes and their polymer composites[J]. Composites Part A Applied Science & Manufacturing, 2016, 91: 351-369.
    Zaumseil, Jana. Single-walled carbon nanotube networks for flexible and printed electronics[J]. Semiconductor Science and Technology, 2015, 30(7): 074001.
    Zhao W, Fan S, Xiao N, et al. Flexible carbon nanotube papers with improved thermoelectric properties[J]. Energy & Environmental Science, 2012, 5: 5364-5369.
    Zhao T, Li X, Wang Y, et al. Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method[J]. Materials Research Bulletin, 2018, 102: 153-159.
    Whitten P G, Spinks G M, Wallace G G. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes[J]. Carbon, 2005, 43(9): 1891-1896.
    Mao T, Tang Y, Zhang Y, et al. Carbon nanotubes/polyaniline nanocomposite coatings: Preparation, rheological behavior, and their application in paper surface treatment[J]. Journal of Applied Polymer Science, 2018, 135(23): 46329.
    Fu Y, Nabiollahi N, Wang T, et al. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity[J]. Nanotechnology, 2012, 23(4): 045304.
    Tang X, Hammel E, Reiter W. Carbon nanotube enhanced thermally conductive phase change material for heat dissipation[C]. International Workshop on Thermal Investigations of ICS and Systems, 2009.
    Sun C H, Lu G Q, Cheng H M. Simple approach to estimating the van der Waals interaction between carbon nanotubes[J]. Physical Review B, 2006, 73(19).
    Wang Y, Yang Z, Chen T, et al. CNT handling with van der Waals force inside a SEM for FET application[C]. IEEE International Conference on Nano/micro Engineered & Molecular Systems, IEEE, 2016.
    Zhbanov A I, Pogorelov E G, Chang Y C. Van der Waals interaction between two crossed carbon nanotubes[J]. ACS Nano, 2010, 4(10): 5937-5945.
    Zhang J, Jiang D, Peng H X, et al. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking[J]. Carbon, 2013, 63(63): 125-132.
    Steiner S, Busato S, Ermanni P. Mechanical properties and morphology of papers prepared from single-walled carbon nanotubes functionalized with aromatic amides[J]. Carbon, 2012, 50(5): 1713-1719.
    Sharma S, Singh B P, Babal A S, et al. Structural and mechanical properties of free-standing multiwalled carbon nanotube paper prepared by an aqueous mediated process[J]. Journal of Materials Science, 2017, 52(12): 7503-7515.
    Agrawal S, Narula A K. Synthesis and characterization of phosphorus containing aromatic poly(amide-imide)s copolymers for high temperature applications[J]. Polymer Bulletin, 2013, 70(12): 3241-3260.
    Sheikholeslami Z S, Yousefi M, Imani M, et al. Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor[J]. Journal of Materials Science, 2018, 53(2): 959-976.
    Faraji S. Pyrolytic carbon coatings on aligned carbon nanotube assemblies and fabrication of advanced carbon nanotube/carbon composites[J]. North Carolina State University, 2016..
    Zheng G B, Mizuki H, Sano H, et al. CNT-PyC-SiC/SiC double-layer oxidation-protection coating on C/C composite[J]. Carbon, 2008, 46(13): 1808-1811.
    Yao X, Falzon B G, Hawkins S C, et al. Aligned carbon nanotube webs embedded in a composite laminate: A route towards a highly tunable electro-thermal system[J]. Carbon, 2018, 129: 486-494.
    Feng L, Li K, Xue B, et al. Optimizing matrix and fiber/matrix interface to achieve combination of strength, ductility and toughness in carbon nanotube-reinforced carbon/carbon composites[J]. Materials & Design, 2017, 113:9-16.
    Zhang Z, Gu Y, Wang S, et al. Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film[J]. Carbon, 2016, 107: 405-414.
    Nam T H, Goto K, Yamaguchi Y, et al. Improving mechanical properties of high volume fraction aligned multi-walled carbon nanotube/epoxy composites by stretching and pressing[J]. Composites Part B, 2016, 85: 15-23.
    Singleton J W, Misak H E, Mall S. Relationships between tensile behavior, physical parameters and manufacturing parameters of carbon nanotube sheet[J]. Materials & Design, 2017, 116: 199-206.
    Ürk D, Demir E, Bulut O, Çak1ro?lu D, et al. Understanding the polymer type and CNT orientation effect on the dynamic mechanical properties of high volume fraction CNT polymer nanocomposites[J]. Composite Structures, 2016, 155: 255-62.
  • 加载中
图(1)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  28
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-28
  • 录用日期:  2019-11-04
  • 修回日期:  2019-10-02
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回