留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同纺丝工艺T800炭纤维及其缠绕压力容器性能差异性研究

张世杰 王汝敏 廖英强

张世杰, 王汝敏, 廖英强. 不同纺丝工艺T800炭纤维及其缠绕压力容器性能差异性研究[J]. 新型炭材料, 2019, 34(6): 578-586. doi: 10.1016/S1872-5805(19)60033-8
引用本文: 张世杰, 王汝敏, 廖英强. 不同纺丝工艺T800炭纤维及其缠绕压力容器性能差异性研究[J]. 新型炭材料, 2019, 34(6): 578-586. doi: 10.1016/S1872-5805(19)60033-8
ZHANG Shi-jie, WANG Ru-min, LIAO Ying-qiang. A comparative study of two kinds of T800 carbon fibers produced by different spinning methods for the production of filament-wound pressure vessels[J]. NEW CARBON MATERIALS, 2019, 34(6): 578-586. doi: 10.1016/S1872-5805(19)60033-8
Citation: ZHANG Shi-jie, WANG Ru-min, LIAO Ying-qiang. A comparative study of two kinds of T800 carbon fibers produced by different spinning methods for the production of filament-wound pressure vessels[J]. NEW CARBON MATERIALS, 2019, 34(6): 578-586. doi: 10.1016/S1872-5805(19)60033-8

不同纺丝工艺T800炭纤维及其缠绕压力容器性能差异性研究

doi: 10.1016/S1872-5805(19)60033-8
基金项目: 高性能炭纤维项目(TDZX-16-003-02).
详细信息
    通讯作者:

    张世杰,博士研究生,高级工程师.E-mail:wzym007163.com

  • 中图分类号: TB332

A comparative study of two kinds of T800 carbon fibers produced by different spinning methods for the production of filament-wound pressure vessels

Funds: High Performance Carbon Fiber Project (TDZX-16-003-02).
  • 摘要: 对比分析了采用不同纺丝工艺制备的T800HB炭纤维与T800SC炭纤维之间的微观形态、NOL环性能、压力容器应变分布及水压实验的性能差异。结果表明,纺丝工艺不同使得T800HB炭纤维较T800SC炭纤维脆性更大,与树脂基体结合更强,导致复合材料拉伸破坏时吸收能量较少而影响其拉伸性能的发挥。采用T800HB炭纤维制备的复合材料压力容器在封头上靠近赤道位置处产生了更高的压缩应变,更易在此处发生低压爆破。Φ150 mm压力容器水压检测结果表明,T800HB炭纤维压力容器由于低压破坏,环向纤维强度发挥率仅为72%,容器特性系数为34.8 km;而T800SC炭纤维压力容器环向纤维强度发挥率达92.3%,容器特性系数达47.2 km。因此,采用干喷湿纺工艺所制T800SC炭纤维更适合缠绕工艺制备压力容器。
  • Demir I, Sayman O, Dogan A, et al. The effects of repeated transverse impact load on the burst pressure of composite pressure vessel[J]. Composites Part B:Engineering, 2015, 68:121-125.
    Ramanjaneyulu V, Balakrishna V, Murthy R, et al. Analysis of composite rocket motor case using finite element method[J]. Materials Today:Proceedings, 2018, 5(2):4920-4929.
    Wu Q, Chen X, Fan Z, et al. Experimental and numerical studies of impact on filament-wound composite cylinder[J]. Acta Mechanica Solida Sinica, 2017, 30(5):540-549.
    Yang Y, Pan Y, Feng Z, et al. Evaluation of aerospace carbon fibers[J]. New Carbon Materials, 2014, 29(3):161-168.
    Kuznetsov V M, Nekhoroshikh G E. Application of carbon fiber reinforced plastics in the manufacture of toroidal pressure vessels[J]. Polymer Science, Series D, 2015,8(3):231-234.
    Joselin R, Chelladurai T. Burst pressure prediction of composite pressure chambers using acoustic emission technique:a review[J]. Journal of Failure Analysis and Prevention, 2011, 11(4):344-356.
    Wang C, Dong X, Wang Q. Effect of coagulation on the structure and property of PAN nascent fibers during dry jet wet-spinning[J]. Journal of Polymer Research, 2009, 16(6), 719-724.
    Wang M, Bian W, Jiang Z. Estimate of carbon fiber's fracture toughness based on the small angle X-ray diffraction[J]. Polymer Bulletin, 2017, 74(10):4143-4151.
    Kovarskii A L, Kasparov V V, Krivandin A V, et al. EPR spectroscopic and X-Ray diffraction studies of carbon fibers with different mechanical properties[J]. Russian Journal Physcal Chemistry B, 2017, 11(2):233-241.
    Li W, Long D, Miyawaki J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. Journal of Materials Science, 2012, 47(2):919-928.
    Jing M, Tan T, Wang C, et al. Comparison on the micro-structure of Toray T800H and T800S carbon fiber[J]. Materials Science and Technology, 2015, 23(2):45-52.
    Samoilov V M, Verbets D B, Bubnenkov I A, et al. Influence of graphitization conditions at 3000℃ on structural and mechanical properties of high-modulus polyacrylonitrile-based carbon fibers[J]. Inorganic Materials:Applied Research, 2018, 9(5):890-899.
    Xu J, An Q, Cai X, et al. Drilling machinability evaluation on new developed high-strength T800S/250F CFRP laminates[J]. International Journal of Precision Engineering and Manufacture, 2013, 14(10):1687-1696.
    Wang F, Zhang B, Ma J, et al. Computation of the distribution of the fiber-matrix interface cracks in the edge trimming of CFRP[J]. Applied Composite Materials, 2019, 26:159-186.
    Li L, Pan Y, Zhu S, et al. A comparative study of the fuzz produced by friction and tension in China T800 and Toray T800H carbon fiber tows[J]. New Carbon Materials, 2018, 33(4):377-384.
    Chen X, Wang X. T800 carbon fiber in the application of composite pressure vessel research[J]. Hi-tech Fiber & Application, 2017, 42(3):45-49.
    Zhang J, Karbhari V, Wu L, et al. Field exposure based durability assessment of FRP column wrap systems[J]. Composites Part B:Engineering, 2003, 34(1):41-50.
    Chen W, Yu Y, Li P, et al. Effect of new epoxy matrix for T800 carbon fiber/epoxy filament wound composites[J]. Composites Science and Technology, 2007, 67(11-12):2261-2270.
    Newcomb B A. Processing, structure, and properties of carbon fibers composites[J]. Part A:Applied Science and Manufacturing, 2016, 91:262-282.
  • 加载中
计量
  • 文章访问数:  162
  • HTML全文浏览量:  38
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 录用日期:  2020-01-03
  • 修回日期:  2019-12-10
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回