留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮杂炭催化剂催化5-羟甲基糠醛选择性氧化制备2,5-呋喃二甲醛

滕娜 李金龙 路博琼 王玉琪 贾时宇 王英雄 侯相林

滕娜, 李金龙, 路博琼, 王玉琪, 贾时宇, 王英雄, 侯相林. 氮杂炭催化剂催化5-羟甲基糠醛选择性氧化制备2,5-呋喃二甲醛[J]. 新型炭材料, 2019, 34(6): 593-599. doi: 10.1016/S1872-5805(19)60034-X
引用本文: 滕娜, 李金龙, 路博琼, 王玉琪, 贾时宇, 王英雄, 侯相林. 氮杂炭催化剂催化5-羟甲基糠醛选择性氧化制备2,5-呋喃二甲醛[J]. 新型炭材料, 2019, 34(6): 593-599. doi: 10.1016/S1872-5805(19)60034-X
TENG Na, LI Jin-long, LU Bo-qiong, WANG Yu-qi, JIA Shi-yu, WANG Ying-xiong, HOU Xiang-lin. The selective aerobic oxidation of 5-hydroxymethylfurfural to produce 2,5-diformylfuran using nitrogen-doped porous carbons as catalysts[J]. NEW CARBON MATERIALS, 2019, 34(6): 593-599. doi: 10.1016/S1872-5805(19)60034-X
Citation: TENG Na, LI Jin-long, LU Bo-qiong, WANG Yu-qi, JIA Shi-yu, WANG Ying-xiong, HOU Xiang-lin. The selective aerobic oxidation of 5-hydroxymethylfurfural to produce 2,5-diformylfuran using nitrogen-doped porous carbons as catalysts[J]. NEW CARBON MATERIALS, 2019, 34(6): 593-599. doi: 10.1016/S1872-5805(19)60034-X

氮杂炭催化剂催化5-羟甲基糠醛选择性氧化制备2,5-呋喃二甲醛

doi: 10.1016/S1872-5805(19)60034-X
基金项目: 国家自然科学基金(U1710252,51703237);山西省应用基础研究项目(201701D221053).
详细信息
    作者简介:

    滕娜,高级工程师.E-mail:tengna@sxicc.ac.cn

    通讯作者:

    侯相林,研究员.E-mail:houxianglin@sxicc.ac.cn;王玉琪,助理研究员.E-mail:wangyuqi@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

The selective aerobic oxidation of 5-hydroxymethylfurfural to produce 2,5-diformylfuran using nitrogen-doped porous carbons as catalysts

Funds: National Natural Science Foundation of China (U1710252, 51703237); Applied Fundamental Research Project of Shanxi Province (201701D221053).
  • 摘要: 利用氮杂炭材料作为催化剂,实现了5-羟甲基糠醛(5-HMF)选择性氧化制备2,5-呋喃二甲醛(2,5-DFF)。该氮杂炭催化剂通过壳聚糖热解制得,且壳聚糖是该催化剂的碳源和氮源,在热解过程中使用K2CO3作为活化剂。在不外加添加剂的情况下,该催化剂对5-HMF制备2,5-DFF展现出较高的催化活性。在120℃、7.5 h和2.0 MPa氧气条件下,5-HMF的转化率可达95.3%,2,5-DFF的选择性可达94.6%。氮杂炭催化剂表面的石墨型氮对分子氧的活化展现出高效的催化性能。同时,氧自由基的形成有利于5-HMF的氧化脱氢。氮杂炭催化剂表面的石墨型氮是5-HMF选择性氧化制备2,5-DFF的活性位点。本研究为无金属催化5-HMF选择性氧化制备2,5-DFF提供了一条新思路。
  • Ravindran R, Jaiswal A K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste:Challenges and opportunities[J]. Bioresource Technology, 2016, 199:92-102.
    Zhou P, Zhang Z, One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural[J]. Catalysis Science & Technology, 2016, 6:3694-3712.
    Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41:1538-1558.
    van Putten R J, van der Waal J C, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113:1499-1597.
    Rosatella A A, Simeonov S P, Frade R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform:Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13:754-793.
    Zhou C, Shen C, Ji K, et al. Efficient production of 5-hydroxymethylfurfural enhanced by liquid-liquid extraction in a membrane dispersion microreactor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6:3992-3999.
    Ilkaeva M, Krivtsov I, García-López E I, et al. Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct[J]. Journal of Catalysis, 2018, 359:212-222.
    Louie Y L, Tang J, Hell A M L, et al. Kinetics of hydrogenation and hydrogenolysis of 2,5-dimethylfuran over noble metals catalysts under mild conditions[J]. Applied Catalysis B:Environmental, 2017, 202:557-568.
    Zhou C, Deng W, Wan X, et al. Functionalized carbon nanotubes for biomass conversion:The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst[J]. Chem Cat Chem, 2015, 7:2853-2863.
    Wang H, Deng T, Wang Y, et al. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural[J]. Green Chemistry, 2013, 15:2379-2383.
    Kong X, Zhu Y, Fang Z, et al. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives[J]. Green Chemistry, 2018, 20:3657-3682.
    Ma J, Du Z, Xu J, et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material[J]. Chem Sus Chem, 2011, 4:51-54.
    Xiang T, Liu X, Yi P, et al. Schiff base polymers derived from 2,5-diformylfuran[J]. Polymer International, 2013, 62:1517-1523.
    Antonyraj C A, Jeong J, Kim B, et al. Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production[J]. Journal of Industrial and Engineering Chemistry, 2013, 19:1056-1059.
    Zhang W, Xie J, Hou W, et al. One-pot template-free synthesis of Cu-MOR zeolite toward efficient catalyst support for aerobic oxidation of 5-hydroxymethylfurfural under ambient pressure[J]. ACS Applied Materials & Interfaces, 2016, 8:23122-23132.
    Zhang W, Hou W, Meng T, et al. Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran[J]. Catalysis Science & Technology, 2017, 7:6050-6058.
    Biswas S, Dutta B, Mannodi-Kanakkithodi A, et al. Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran[J]. Chemical Communications, 2017, 53:11751-11754.
    Hou W, Wang Q, Guo Z, et al. Nanobeltα-CuV2O6 with hydrophilic mesoporous poly(ionic liquid):a binary catalyst for synthesis of 2,5-diformylfuran from fructose[J]. Catalysis Science & Technology, 2017, 7:1006-1016.
    Chong W G, Xiao F, Yao S, et al. Nitrogen-doped graphene fiber webs for multi-battery energy storage[J]. Nanoscale, 2019, 11:6334-6342.
    Jin X, Balasubramanian V V, Selvan S T, et al. Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content:a metal-free basic catalyst[J]. Angewandte Chemie International Edition, 2009, 48:7884-7887.
    Tuci G, Luconi L, Rossin A, et al. Aziridine-functionalized multiwalled carbon nanotubes:Robust and versatile catalysts for the oxygen reduction reaction and knoevenagel condensation[J]. ACS Applied Materials & Interfaces, 2016, 8:30099-30106.
    Hu X, Long Y, Fan M, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B:Environmental, 2019, 244:25-35.
    Long J, Xie X, Xu J, et al. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols[J]. ACS Catalysis, 2012, 2:622-631.
    Zeng L, Li X, Fan S, et al. Seaweed-derived nitrogen-rich porous biomass carbon as bifunctional materials for effective electrocatalytic oxygen reduction and high-performance gaseous toluene absorbent[J]. ACS Sustainable Chemical & Engineering, 2019, 7:5057-5064.
    Fujita S I, Yamada K, Katagiri A, et al. Nitrogen-doped metal-free carbon catalysts for aerobic oxidation of xanthene[J]. Applied Catalysis A:General, 2014, 488:171-175.
    Verma S, Nadagouda M N, Varma R S. Porous nitrogen-enriched carbonaceous material from marine waste:chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid[J]. Scientific Reports, 2017, 7:13596-13601.
    Watanabe H, Asano S, Fujita S i, et al. Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols[J]. ACS Catalysis, 2015, 5:2886-2894.
    Ren Y, Yuan Z, Lv K, et al. Selective and metal-free oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped carbon materials[J]. Green Chemistry, 2018, 20:4946-4956.
    Lv G, Wang H, Yang Y, et al. Graphene oxide:A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran[J]. ACS Catalysis, 2015, 5:5636-5646.
    Lv G, Wang H, Yang Y, et al. Aerobic selective oxidation of 5-hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as co-catalyst[J]. Catalysis Science & Technology, 2016, 6:2377-2386.
    Li B, Cheng Y, Dong L, et al. Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors[J]. Carbon, 2017, 122:592-603.
    Xia J, Zhang N, Chong S, et al. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor[J]. Green Chemistry, 2018, 20:694-700.
    Jeyaraj V S, Kamaraj M, Subramanian V. Generalized reaction mechanism for the selective aerobic oxidation of aryl and alkyl alcohols over nitrogen-doped graphene[J]. Journal of Physical Chemistry C, 2015, 119:26438-26450.
  • 加载中
计量
  • 文章访问数:  403
  • HTML全文浏览量:  86
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-10
  • 录用日期:  2020-01-03
  • 修回日期:  2019-12-05
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回