Ravindran R, Jaiswal A K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste:Challenges and opportunities[J]. Bioresource Technology, 2016, 199:92-102.
|
Zhou P, Zhang Z, One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural[J]. Catalysis Science & Technology, 2016, 6:3694-3712.
|
Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41:1538-1558.
|
van Putten R J, van der Waal J C, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113:1499-1597.
|
Rosatella A A, Simeonov S P, Frade R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform:Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13:754-793.
|
Zhou C, Shen C, Ji K, et al. Efficient production of 5-hydroxymethylfurfural enhanced by liquid-liquid extraction in a membrane dispersion microreactor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6:3992-3999.
|
Ilkaeva M, Krivtsov I, García-López E I, et al. Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct[J]. Journal of Catalysis, 2018, 359:212-222.
|
Louie Y L, Tang J, Hell A M L, et al. Kinetics of hydrogenation and hydrogenolysis of 2,5-dimethylfuran over noble metals catalysts under mild conditions[J]. Applied Catalysis B:Environmental, 2017, 202:557-568.
|
Zhou C, Deng W, Wan X, et al. Functionalized carbon nanotubes for biomass conversion:The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst[J]. Chem Cat Chem, 2015, 7:2853-2863.
|
Wang H, Deng T, Wang Y, et al. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural[J]. Green Chemistry, 2013, 15:2379-2383.
|
Kong X, Zhu Y, Fang Z, et al. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives[J]. Green Chemistry, 2018, 20:3657-3682.
|
Ma J, Du Z, Xu J, et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material[J]. Chem Sus Chem, 2011, 4:51-54.
|
Xiang T, Liu X, Yi P, et al. Schiff base polymers derived from 2,5-diformylfuran[J]. Polymer International, 2013, 62:1517-1523.
|
Antonyraj C A, Jeong J, Kim B, et al. Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production[J]. Journal of Industrial and Engineering Chemistry, 2013, 19:1056-1059.
|
Zhang W, Xie J, Hou W, et al. One-pot template-free synthesis of Cu-MOR zeolite toward efficient catalyst support for aerobic oxidation of 5-hydroxymethylfurfural under ambient pressure[J]. ACS Applied Materials & Interfaces, 2016, 8:23122-23132.
|
Zhang W, Hou W, Meng T, et al. Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran[J]. Catalysis Science & Technology, 2017, 7:6050-6058.
|
Biswas S, Dutta B, Mannodi-Kanakkithodi A, et al. Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran[J]. Chemical Communications, 2017, 53:11751-11754.
|
Hou W, Wang Q, Guo Z, et al. Nanobeltα-CuV2O6 with hydrophilic mesoporous poly(ionic liquid):a binary catalyst for synthesis of 2,5-diformylfuran from fructose[J]. Catalysis Science & Technology, 2017, 7:1006-1016.
|
Chong W G, Xiao F, Yao S, et al. Nitrogen-doped graphene fiber webs for multi-battery energy storage[J]. Nanoscale, 2019, 11:6334-6342.
|
Jin X, Balasubramanian V V, Selvan S T, et al. Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content:a metal-free basic catalyst[J]. Angewandte Chemie International Edition, 2009, 48:7884-7887.
|
Tuci G, Luconi L, Rossin A, et al. Aziridine-functionalized multiwalled carbon nanotubes:Robust and versatile catalysts for the oxygen reduction reaction and knoevenagel condensation[J]. ACS Applied Materials & Interfaces, 2016, 8:30099-30106.
|
Hu X, Long Y, Fan M, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B:Environmental, 2019, 244:25-35.
|
Long J, Xie X, Xu J, et al. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols[J]. ACS Catalysis, 2012, 2:622-631.
|
Zeng L, Li X, Fan S, et al. Seaweed-derived nitrogen-rich porous biomass carbon as bifunctional materials for effective electrocatalytic oxygen reduction and high-performance gaseous toluene absorbent[J]. ACS Sustainable Chemical & Engineering, 2019, 7:5057-5064.
|
Fujita S I, Yamada K, Katagiri A, et al. Nitrogen-doped metal-free carbon catalysts for aerobic oxidation of xanthene[J]. Applied Catalysis A:General, 2014, 488:171-175.
|
Verma S, Nadagouda M N, Varma R S. Porous nitrogen-enriched carbonaceous material from marine waste:chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid[J]. Scientific Reports, 2017, 7:13596-13601.
|
Watanabe H, Asano S, Fujita S i, et al. Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols[J]. ACS Catalysis, 2015, 5:2886-2894.
|
Ren Y, Yuan Z, Lv K, et al. Selective and metal-free oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped carbon materials[J]. Green Chemistry, 2018, 20:4946-4956.
|
Lv G, Wang H, Yang Y, et al. Graphene oxide:A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran[J]. ACS Catalysis, 2015, 5:5636-5646.
|
Lv G, Wang H, Yang Y, et al. Aerobic selective oxidation of 5-hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as co-catalyst[J]. Catalysis Science & Technology, 2016, 6:2377-2386.
|
Li B, Cheng Y, Dong L, et al. Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors[J]. Carbon, 2017, 122:592-603.
|
Xia J, Zhang N, Chong S, et al. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor[J]. Green Chemistry, 2018, 20:694-700.
|
Jeyaraj V S, Kamaraj M, Subramanian V. Generalized reaction mechanism for the selective aerobic oxidation of aryl and alkyl alcohols over nitrogen-doped graphene[J]. Journal of Physical Chemistry C, 2015, 119:26438-26450.
|