留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高石墨含量鳞片石墨/铜复合材料的微观结构和性能

刘犇 张东卿 李香粉 郭晓慧 师晶 刘占军 郭全贵

刘犇, 张东卿, 李香粉, 郭晓慧, 师晶, 刘占军, 郭全贵. 高石墨含量鳞片石墨/铜复合材料的微观结构和性能. 新型炭材料, 2020, 35(1): 58-65. doi: 10.1016/S1872-5805(20)60475-9
引用本文: 刘犇, 张东卿, 李香粉, 郭晓慧, 师晶, 刘占军, 郭全贵. 高石墨含量鳞片石墨/铜复合材料的微观结构和性能. 新型炭材料, 2020, 35(1): 58-65. doi: 10.1016/S1872-5805(20)60475-9
LIU Ben, ZHANG Dong-qing, LI Xiang-fen, GUO Xiao-hui, SHI Jing, LIU Zhan-jun, GUO Quan-gui. The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake. New Carbon Mater., 2020, 35(1): 58-65. doi: 10.1016/S1872-5805(20)60475-9
Citation: LIU Ben, ZHANG Dong-qing, LI Xiang-fen, GUO Xiao-hui, SHI Jing, LIU Zhan-jun, GUO Quan-gui. The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake. New Carbon Mater., 2020, 35(1): 58-65. doi: 10.1016/S1872-5805(20)60475-9

高石墨含量鳞片石墨/铜复合材料的微观结构和性能

doi: 10.1016/S1872-5805(20)60475-9
基金项目: 山西省重点研发计划(201603D121016).
详细信息
    作者简介:

    刘犇,助理研究员.E-mail:liubenno1@126.com

    通讯作者:

    张东卿,博士,副研究员.E-mail:dongqingzh@sxicc.ac.cn

  • 中图分类号: TB333

The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake

Funds: Key Research and Development Plan of Shanxi Province (201603D121016).
  • 摘要: 通过真空热压烧结制备出高石墨含量的鳞片石墨/铜复合材料。研究了高石墨含量对鳞片石墨/铜复合材料微观结构和性能的影响。结果表明,随着石墨体积分数的增加(72.08 vol.%~93.34 vol.%),复合材料的密度降低(4.07~2.63 g cm-3);电导率降低(14.71%~2.45%国际退火铜标准);面向热导率先增加后降低,在石墨体积分数为82.6%时,面向热导率达到最大值为663.73 W m-1 K-1;面向热膨胀系数降低(6.6×10-6~2.2×10-6 K-1);抗弯强度降低(42.48~14.63 MPa),抗压强度降低(45.75~20.46 MPa)。鳞片石墨在复合材料中高度取向排列,分布均匀。并对预测复合材料的热导率模型进行修正,发现测量结果和模型预测结果相吻合。
  • Luedtke A. Thermal management materials for high-performance applications[J]. Advanced Engineering Materials, 2004, 6(3):142-144.
    Zhang R, He X B, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing[J]. Vacuum, 2017, 141(7):265-271.
    Prieto R, Molina J M, Narciso J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications[J]. Scripta Materialia, 2008, 59(1):11-14.
    Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X=Cr, B) diamond composites[J]. Scripta Materialia, 2007, 57(11):988-991.
    Chen J H, Ren S B, He X B, et al. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering[J]. Carbon, 2017, 121(9):25-34.
    Tao Z C, Guo Q G, Gao X Q, et al. Graphite fiber/copper composites with near-zero thermal expansion[J]. Materials & Design, 2012, 33(1):372-375.
    Duan K, Li L, Hu Y J, et al. Damping characteristic of Ni-coated carbon nanotube/copper composite[J]. Materials & Design, 2017, 133(11):455-463.
    Abyzov A M, Kruszewski M J, Ciupiński ?, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Materials & Design, 2015, 76(7):97-109.
    Gao X, Yue H Y, Guo E J, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology. 2016, 301(11):601-607.
    Wejrzanowski T, Grybczuk M, Chmielewski M, et al. Thermal conductivity of metal-graphene composites[J]. Materials & Design, 2016, 99(6):163-173.
    Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering:R:Reports, 2013, 74(10):281-350.
    Bai H, Xue C, Lyu J L, et al. Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface[J]. Composites, Part A, 2018, 106(3):42-51.
    Liu Q, He X B, Ren S B, et al. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating[J]. Journal of Alloys and Compounds, 2014, 587(3):255-259.
    Ren S B, Chen J H, He X B, et al. Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering[J]. Carbon, 2018, 127(2):412-423.
    Chen J K, Huang I S. Thermal properties of aluminum-graphite composites by powder metallurgy[J]. Composites Part B, 2013, 44(1):698-703.
    Ren S B, Hong Q N, Chen J H, et al. The influence of matrix alloy on the microstructure and properties of (flake graphite+diamond)/Cu composites by hot pressing[J]. Journal of Alloys and Compounds, 2015, 652(12):351-357.
    Che Q L, Zhang J J, Chen X K, et al. Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Materials Science in Semiconductor Processing, 2015, 33(5):67-75.
    Xue C, Bai H, Tao P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nanolayer on graphite surface[J]. Materials & Design, 2016, 108(100):250-258.
    Truong H V, Zinsmeister G E. Experimental study of heat transfer in layered composites[J]. International Journal of Heat and Mass Transfer, 1978, 21(7):905-909.
    Progelhof R C, Throne J L, Ruetsch R R. Methods for predicting the thermal conductivity of composite systems:a review[J]. Polymeric Materials:Science and Engineering Division:1976, 16(9):615-625.
    Hasselman D P H, Donaldson K Y, Thomas J R, et al. Thermal conductivity of vapor-liquid-solid and vapor-solid silicon carbide whisker-reinforced lithium aluminosilicate glass-ceramic composites[J]. Journal of the American Chemical Society, 1996, 79(3):742-748.
    Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics, 1997, 81(10):6692-6699.
    Swartz E T, Pohl R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61(1):605-668.
    Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2012, 43(2):316-324.
    Ueno T, Yoshioka T, Ogawa J I, et al. Highly thermal conductive metal/carbon composites by pulsed electric current sintering[J]. Synthetic Metals, 2009, 159(21):2170-2172.
    Prieto R, Molina J M, Narciso J, et al. Thermal conductivity of graphite flakes-SiC particles/metal composites[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(12):1970-1977.
    Xiao J K, Zhang L, Zhou K C, et al. Micro scratch behavior of copper-graphite composites[J]. Tribology International, 2013, 57(1):38-45.
    Liu Z J, Guo Q G, Shi J L, et al. Graphite blocks with high thermal conductivity derived from natural graphite flake[J]. Carbon, 2008, 46(3):414-421.
    Yuan G M, Li X K, Dong Z J, et al. Graphite blocks with preferred orientation and high thermal conductivity[J]. Carbon, 2012, 50(1):175-182.
  • 加载中
图(1)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  218
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-20
  • 录用日期:  2020-04-02
  • 修回日期:  2020-01-10
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回