留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米碳管改善氧化铝填充硅橡胶复合材料的导热与机械性能

林嘉隆 苏诗茗 贺艳兵 康飞宇

林嘉隆, 苏诗茗, 贺艳兵, 康飞宇. 纳米碳管改善氧化铝填充硅橡胶复合材料的导热与机械性能[J]. 新型炭材料, 2020, 35(1): 66-72. doi: 10.1016/S1872-5805(20)60476-0
引用本文: 林嘉隆, 苏诗茗, 贺艳兵, 康飞宇. 纳米碳管改善氧化铝填充硅橡胶复合材料的导热与机械性能[J]. 新型炭材料, 2020, 35(1): 66-72. doi: 10.1016/S1872-5805(20)60476-0
LIN Jia-long, SU Shi-ming, HE Yan-bing, KANG Fei-yu. Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes[J]. NEW CARBON MATERIALS, 2020, 35(1): 66-72. doi: 10.1016/S1872-5805(20)60476-0
Citation: LIN Jia-long, SU Shi-ming, HE Yan-bing, KANG Fei-yu. Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes[J]. NEW CARBON MATERIALS, 2020, 35(1): 66-72. doi: 10.1016/S1872-5805(20)60476-0

纳米碳管改善氧化铝填充硅橡胶复合材料的导热与机械性能

doi: 10.1016/S1872-5805(20)60476-0
基金项目: 国家自然科学基金(51672156).
详细信息
    作者简介:

    林嘉隆,硕士研究生.E-mail:boylin@outlook.com

    通讯作者:

    贺艳兵,博士,副教授.E-mail:he.yanbing@sz.tsinghua.edu.cn;康飞宇,博士,教授.E-mail:fykang@sz.tsinghua.edu.cn

  • 中图分类号: TB33

Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes

Funds: National Natural Science Foundation of China (51672156).
  • 摘要: 纳米碳管由于其优异的特性可以用于改善复合材料的导热和机械性能。本文通过传统的机械混合工艺,采用氧化铝粉体和少量纳米碳管填充甲基乙烯基硅橡胶,研究了氧化铝粉体的质量分数、表面改性和纳米碳管的添加对复合材料热导率、杨氏模量和硬度的影响。结果表明:氧化铝粉体的质量分数越高,复合材料的热导率越高;当氧化铝粉体的质量分数固定时,对其表面改性和添加纳米碳管能够明显提高复合材料的热导率、杨氏模量和硬度,发现改性氧化铝和纳米碳管并用可以协同增强填料与橡胶间的界面作用,促进橡胶基底中更好的导热通道和网络结构的形成,从而改善复合材料的导热和机械性能。
  • Frogley M D, Ravich D, Wagner H D. Mechanical properties of carbon nanoparticle-reinforced elastomers[J]. Composites Science & Technology, 2003, 63(11):1647-1654.
    Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules, 2006, 39(16):5194-5205.
    Kumluta? Dilek, Tavman I H, Turhan Çoban M. Thermal conductivity of particle filled polyethylene composite materials[J]. Composites Science & Technology, 2003, 63(1):113-117.
    Mu Q, Feng S, Diao G. Thermal conductivity of silicone rubber filled with ZnO[J]. Polymer Composites, 2010, 28(2):125-130.
    Kim E S, Kim E J, Shim J H, et al. Thermal stability and ablation properties of silicone rubber composites[J]. Journal of Applied Polymer Science, 2008, 110(2):1263-1270.
    Kim E S, Lee T H, Shin S H, et al. Effect of incorporation of carbon fiber and silicon carbide powder into silicone rubber on the ablation and mechanical properties of the silicone rubber-based ablation material[J]. Journal of Applied Polymer Science, 2011, 120(2):831-838.
    Fan W, Feng G, Zhao J W. Research and application development of thermal conductivity polymer composites[J]. Engineering Plastics Application, 2011, 39(12):101-104.
    Wang F, Li Y, Wang D. Adhesion enhancement for liquid silicone rubber and different surface by organosilane and Pt catalyst at room temperature[J]. Bulletin of Materials Science, 2013, 36(6):1013-1017.
    Kang D W, Yeo H G, Lee K S. Preparation and characteristics of liquid silicone rubber nanocomposite containing ultrafine magnesium ferrite powder[J]. Journal of Inorganic & Organometallic Polymers, 2004, 14(1):73-84.
    Simon M W, Stafford K T, Ou D L. Nanoclay reinforcement of liquid silicone rubber[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2008, 18(3):364-373.
    Zhou W Y, Qi S H, Zhao H Z, et al. Thermally conductive silicone rubber reinforced with boron nitride particle[J]. Polymer Composites, 2010, 28(1):23-28.
    Jia M, Peinemann K V, Behling R D. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation[J]. Journal of Membrane Science, 1991, 57(2-3):289-292.
    Wang F, Zhang P, Gao M. Improvement in the electric field distribution of silicone rubber composite insulators by non-linear fillers[C]//20138th International Forum on Strategic Technology (IFOST). IEEE, 2013.
    Wang Z H, Lu Y L, Liu J, et al. Preparation of nano-zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties[J]. Journal of Applied Polymer Science, 2010, 119(2):1144-1155.
    Wang Z H, Lu Y L, Ding J B, et al. Preparation of nano-reinforced thermal conductive natural rubber composites[J]. Polymer Composites, 2016, 37(3):380-384.
    Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano-size boron nitride reinforced silicon rubber composites[J]. Thermochimica Acta, 2010, 499(1):40-47.
    Pongsa U, Somwangthanaroj A. Effective thermal conductivity of 3,5-diaminobenzoyl-functionalized multiwalled carbon nanotubes/epoxy composites[J]. Journal of Applied Polymer Science, 2013, 130(5):3184-3196.
    Costa P, Silva J, Ansón-Casaos A, et al. Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applications[J]. Composites Part B, 2014, 61(52):136-146.
    Chen X H, Song H H. Multi-walled carbon nanotube filled SBR rubber composites[J]. New Carbon Materials, 2004, 19(3):214-218.
    Li Z G, Chen H, Zhu Z H, et al. Study on thermally conductive ESBR vulcanizates[J]. Polymer Bulletin, 2011, 67(6):1091-1104.
    Fan Z J, Wang Y, Luo G H, et al. The synergetic effect of carbon nanotubes and carbon black in a rubber system[J]. New Carbon Materials, 2008, 23(2):149-153.
    Zhang X G, Gai P X, Zhang B K, et al. Thermal conductivity of rubber composite materials with a hybrid AlN/carbon fiber filler[J]. Chinese Science Bulletin, 2018, 63(23):2403-2410.
    Zhou W Y, Qi S H, Tu C C, et al. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber[J]. Journal of Applied Polymer Science, 2010, 104(2):1312-1318.
    Li X Q, Hu J X, Wu S Q, et al. The Effect of Al2O3/Carbon Fibers on the Properties of EPDM/MVQ Blends[J]. Special Purpose Rubber Products, 2014(6):1-4.
    Cheng X T, Jiang H W. Surface modification of alumina and its application in thermal conductivity silicone potting[J]. Silicone Material, 2012, 26(3):148-152.
    Akil Md H. Effect of various coupling agents on properties of alumina-filled PP composites[J]. Journal of Reinforced Plastics and Composites, 2006, 25(7):745-759.
    Namitha L K, Chameswary J, Ananthakumar S, et al. Effect of micro- and nano-fillers on the properties of silicone rubber-alumina flexible microwave substrate[J]. Ceramics International, 2013, 39(6):7077-7087.
    Zha J W, Zhu Y H, Li W K, et al. Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles[J]. Applied Physics Letters, 2012, 101(6):062905.
    Chen Y Z, Lin Y, Luo Y F, et al. Morphology and performance of styrene butadiene rubber filled with modified graphite nanoplatelet and carbon black[J]. Polymers for Advanced Technologies, 2016, 27(6):830-840.
    Lin Y, Liu S Q, Peng J, et al. The filler-rubber interface and reinforcement in styrene-butadiene rubber composites with graphene/silica hybrids:A quantitative correlation with the constrained region[J]. Composites Part A Applied Science & Manufacturing, 2016, 86:19-30.
    Mao Y Y, Wen S P, Chen Y L, et al. High-performance graphene oxide-based rubber composites[J]. Scientific Reports, 2013, 3(1):2508.
  • 加载中
图(1)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  32
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-29
  • 录用日期:  2020-04-02
  • 修回日期:  2020-01-15
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回