留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生沥青焦颗粒尺寸对自烧结石墨块体微观结构和性能的影响

赵红超 何钊 郭晓慧 连鹏飞 刘占军

赵红超, 何钊, 郭晓慧, 连鹏飞, 刘占军. 生沥青焦颗粒尺寸对自烧结石墨块体微观结构和性能的影响. 新型炭材料, 2020, 35(2): 184-192. doi: 10.1016/S1872-5805(20)60483-8
引用本文: 赵红超, 何钊, 郭晓慧, 连鹏飞, 刘占军. 生沥青焦颗粒尺寸对自烧结石墨块体微观结构和性能的影响. 新型炭材料, 2020, 35(2): 184-192. doi: 10.1016/S1872-5805(20)60483-8
ZHAO Hong-chao, HE Zhao, GUO Xiao-hui, LIAN Peng-fei, LIU Zhan-jun. Effect of the average grain size of green pitch coke on the microstructure and properties of self-sintered graphite blocks. New Carbon Mater., 2020, 35(2): 184-192. doi: 10.1016/S1872-5805(20)60483-8
Citation: ZHAO Hong-chao, HE Zhao, GUO Xiao-hui, LIAN Peng-fei, LIU Zhan-jun. Effect of the average grain size of green pitch coke on the microstructure and properties of self-sintered graphite blocks. New Carbon Mater., 2020, 35(2): 184-192. doi: 10.1016/S1872-5805(20)60483-8

生沥青焦颗粒尺寸对自烧结石墨块体微观结构和性能的影响

doi: 10.1016/S1872-5805(20)60483-8
基金项目: 国家自然科学基金(51572274,91860116).
详细信息
    作者简介:

    赵红超,助理研究员.E-mail:zhaohongchao107@126.com

    通讯作者:

    何钊,博士.E-mail:hezhaomse@163.com;刘占军,研究员.E-mail:zjliu03@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Effect of the average grain size of green pitch coke on the microstructure and properties of self-sintered graphite blocks

Funds: National Natural Science Foundation of China (51572274, 91860116).
  • 摘要: 由不同颗粒尺寸(5.1、3.1和1.9 μm)的生沥青焦制得3种自烧结石墨块体,并对其进行系统的分析表征。石墨块体的结构和性能随着生焦颗粒尺寸的减小呈现出规律性变化。石墨块体的密度、机械强度、肖氏硬度和热膨胀系数随着生焦颗粒尺寸的减小而提高,石墨化度、晶粒尺寸、热导率、平均孔径和孔隙率随着生焦平颗粒尺寸的减小而降低。石墨块体的平均孔径均在纳米尺度,能有效地阻隔熔盐浸渗而应用于熔盐反应堆中。此外,石墨块体因其密实结构和相对优异的机械性能,在密封领域也有较大的应用潜力。自烧结石墨块体的微观结构和性能与生焦颗粒尺寸关系密切,并讨论了生焦颗粒尺寸对石墨块体微观结构/性能的影响及石墨块体微观结构与性能间的关系。
  • Zhong Y J, Zhang J P, Lin J, et al. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor[J]. Journal of Nuclear Materials, 2017, 490:34-40.
    Song J L, Zhao Y L, Zhang J P, et al. Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe135 penetration for molten salt nuclear reactor[J]. Carbon, 2014, 79:36-45.
    Lian P F, Song J L, Liu Z J, et al. Preparation of ultrafine-grain graphite by liquid dispersion technique for inhibiting the liquid fluoride salt infiltration[J]. Carbon, 2016, 102:208-215.
    He Z, Lian P F, Song J L, et al. Microstructure and properties of fine-grained isotropic graphite based on mixed fillers for application in molten salt breeder reactor[J]. Journal of Nuclear Materials, 2018, 511:318-327.
    He Z, Liu Z J, Song J L, et al. Fine-grained graphite with super molten salt barrier property produced from filler of natural graphite flake by a liquid-phase mixing process[J]. Carbon, 2019, 145:367-377.
    Zhao H C, He Z, Liu Z J, et al. Self-sintered nanopore-isotropic graphite derived from green pitch coke for application in molten salt nuclear reactor[J]. Annals of Nuclear Energy, 2019, 131:412-416.
    Dai Z M. Thorium molten salt reactor nuclear energy system (TMSR)[R]. Molten Salt Reactors and Thorium Energy, 2017, 531-540.
    Briggs R B. Molten salt reactors program progress report for period from August 1, 1960 to February 28[R]. USA:Oak Ridge National Laboratory, ORNL-3122, 1961.
    Briggs R B. Molten salt reactors program semiannual progress report for period ending February 28[R]. USA:Oak Ridge National Laboratory, ORNL-3282, 1962.
    MacPherson H G. Molten-salt reactor project:quarterly progress report[R]. USA:Oak Ridge National Laboratory, ORNL-2723, 1959.
    Grimes W R. Bohlmann E G, McDuffie H F, et al. Reactor chemistry division annual progress report for period ending January 31[R]. USA:Oak Ridge National Laboratory, ORNL-3591, 1964.
    Mccoy H, Beatty R, Cook W, et al. New developments in materials for molten salt reactors[J]. Nuclear Application and Technology, 1970, 8(2):156-169.
    Rosenthal M W, Haubenreich P N, Briggs R B. The development status of molten-salt breeder reactors[R]. USA:Oak Ridge National Laboratory, ORNL-4812, 1972.
    Zhou S M, Xia J T, Yan L C. Binderless carbon/graphite materials[J]. Journal of Materials Science and Technology, 1997, 13(3):184-188.
    Ogawa I, Yoshida H, Kobayashi K. Influence of grinding on the graduation graphitization and densification of coke powder[J]. Journal of Materials Science, 1981, 16(8):2181-2187.
    Rand B, Wolf R. High Strength, Sintered Carbons and Graphites[M]. In:Rand B, Appleyard SP, Yardim MF, editors, Design and control of advanced carbon materials for enhanced performance, NATO ASI Series E, Dordrecht:Kluwer Academic Publishers, 2001, 374:241-254.
    Leefe S. Seals research to boost rocket engines into the 21st century[J]. Sealing Technology, 1998, 53:7-9.
    Song Y Z, Zhai G T, Li G S, et al. Carbon/graphite seal materials prepared from mesocarbon microbeads[J]. Carbon, 2004, 42(8-9):1427-1433.
    Horne O J, Kennedy C R, Graphites fabricated from green petroleum pitch cokes[C], The twelfth conference on carbon Pittsburgh, Pennsylvania 28 July-1 August 1975.
    Ogawa I, Kobayashi K, Honda H. Preparation of strong and hard-type carbon solids from ground petroleum coke powder[J]. Tanso, 1978, 93:57-62.
    Mochida I, Korai Y, Fujitsu H, et al. Binderless moulding of green cokes delivered from solvent refined coal and ethylene tar pitch[J]. Journal of Materials Science, 1982, 17(2):525-532.
    Ogawa I, Hagio T, Yoshida H, et al. Direct preparation of carbon solids from green coke pulverized by vibratory-ball-mill[J]. Tanso, 1982, 109:41-45.
    Ogawa I, Yoshida H, Kobayashi K. Influence of quinoline soluble component on the sintering behavior of ground raw coke[J]. Carbon, 1985, 23(1):79-83.
    Schmidt J, Moergenthaler K D, Brehler K P, et al. High-strength graphites for carbon piston applications[J]. Carbon, 1998, 36(7-8):1079-1084.
    Inagaki M, Miwa Y. High density graphites prepared by heat treatment of fine powder of coke under 5 kbar[J]. Tanso, 2010, 85:69-70.
    ASTM C781-08. Standard practice for testing graphite and boronated graphite materials for high-temperature gas-cooled nuclear reactor components[S], 2014.
    Tanabe K N T, Tsukuda N, Kuramoto E. On the characterization of graphite[J]. Journal of Nuclear Materials, 1992, 191-194(Part A):330-334.
    Rudman R. Handbook of X-rays, for diffraction, emission, absorption, and microscopy (Kaelble, Emmett F., ed)[J]. Journal of Chemical Education, 1968, 45(6):443-444.
    Qian C L, Zhou G Z, Huang Q Z. Graphitization measurement of carbon materials by X-ray diffraction[J]. Journal of Central South University of Technology, 2001, 32(3):285-288.
    Garcia-Rosales C, Ordás N, Oyarzabal E, et al. Improvement of the thermo-mechanical properties of fine grain graphite by doping with different carbides[J]. Journal of Nuclear Materials, 2002, 307-311:1282-1288.
    Liu Z J, Guo Q G, Liu L, et al. Influence of filler type on the performance and microstructure of a carbon/graphite material[J]. New Carbon Materials, 2010, 25(4):313-316.
    Fang M D, Tseng W L, Jow J J, et al. Improving the self-sintering of mesocarbon-microbeads for the manufacture of high performance graphite-parts[J]. Carbon, 2012, 50(3):906-913.
    Song Y Z, Zhai G T, Song J R, et al. Seal and wear properties of graphite from MCMBs/pitch-based carbon/phenolic-based carbon composites[J]. Carbon, 2006, 44(13):2793-2796.
    Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 1:Mercury porosimetry. GB/T 21650.1-2008/ISO15901-1:2005.
    Burchell T D, Snead L L. The effect of neutron irradiation damage on the properties of grade NBG-10 graphite[J]. Journal of Nuclear Materials, 2007, 371(1-3):18-27.
    Burchell T D. Irradiation induced creep behavior of H-451 graphite[J]. Journal of Nuclear Materials, 2008, 381(1-2):46-54.
    Matsuo H, Saito T, Sasaki Y. Effects of high temperature neutron irradiation on dimension and thermal expansion coefficient of nuclear grade graphites[J]. Journal of Nuclear Science & Technology, 2012, 18(11):863-869.
    Zhai P F, Liu J, Zeng J, et al. Evidence for re-crystallization process in the irradiated graphite with heavy ions obtained by Raman spectroscopy[J]. Carbon, 2016, 101:22-27.
    Freeman H M, Mironov B E, Windes W, et al. Micro to nanostructural observations in neutron irradiated nuclear graphites PCEA and PCIB[J]. Journal of Nuclear Materials, 2017, 491:221-231.
    Zhou Z, Bouwman W G, Schut H, et al. Influence of neutron irradiation on the microstructure of nuclear graphite:An X-ray diffraction study[J]. Journal of Nuclear Materials, 2017, 487:323-330.
    Chartier A, Brutzel L V, Pageot J. Irradiation damage in nuclear graphite at the atomic scale[J]. Carbon, 2018, 133:224-231.
    Contescu C I, Arregui-Mena J D, Campbell A A, et al. Development of mesopores in superfine grain graphite neutron-irradiated at high fluence[J]. Carbon, 2019, 141:663-675.
  • 加载中
图(1)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  248
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 录用日期:  2020-04-28
  • 修回日期:  2020-04-01
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回