留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温加热快速制备膨胀石墨

侯波 孙红娟 彭同江 张曦月 任亚周

侯波, 孙红娟, 彭同江, 张曦月, 任亚周. 低温加热快速制备膨胀石墨[J]. 新型炭材料, 2020, 35(3): 262-268. doi: 10.1016/S1872-5805(20)60488-7
引用本文: 侯波, 孙红娟, 彭同江, 张曦月, 任亚周. 低温加热快速制备膨胀石墨[J]. 新型炭材料, 2020, 35(3): 262-268. doi: 10.1016/S1872-5805(20)60488-7
HOU Bo, SUN Hong-juan, PENG Tong-jiang, ZHANG Xi-yue, REN Ya-zhou. Rapid preparation of expanded graphite at low temperature[J]. NEW CARBON MATERIALS, 2020, 35(3): 262-268. doi: 10.1016/S1872-5805(20)60488-7
Citation: HOU Bo, SUN Hong-juan, PENG Tong-jiang, ZHANG Xi-yue, REN Ya-zhou. Rapid preparation of expanded graphite at low temperature[J]. NEW CARBON MATERIALS, 2020, 35(3): 262-268. doi: 10.1016/S1872-5805(20)60488-7

低温加热快速制备膨胀石墨

doi: 10.1016/S1872-5805(20)60488-7
基金项目: 国家自然科学基金(41772036);四川省科技厅重点研发项目(18ZDYF2734).
详细信息
    作者简介:

    侯波,硕士研究生.E-mail:houbal@qq.com

    通讯作者:

    孙红娟,教授.E-mail:sunhongjuan@swust.edu.cn

  • 中图分类号: TD985

Rapid preparation of expanded graphite at low temperature

Funds: National Natural Science Foundation of China(41772036), Key R & D Projects of Science and Technology Department of Sichuan Province(18ZDYF2734).
  • 摘要: 本文提出了一种简单、节能、高效的膨胀石墨制备方法。以鳞片石墨为原料,K2S2O8为膨胀剂,在80℃的条件下,加热数分钟即可快速制备出膨胀石墨。采用XRD、SEM、FTIR、Raman和四探针对样品的结构、形貌、官能团和导电性能进行了表征。结果表明,石墨由鳞片状转变为蠕虫状,最大膨胀容积为150 mL/g,且该方法对石墨结构的氧化程度低。由该膨胀石墨制备的柔性石墨的电导率为5.47×104S/m。该方法因其简单、成本低、对环境危害小等特点具有良好的应用前景。
  • Li J H, Feng L L, Jia Z X. Preparation of expanded graphite with 160μm mesh of fine flake graphite[J]. Materials Letters, 2006, 60(6):746-749.
    Lee S, min Kim H, Seong D G, et al. Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites[J]. Carbon, 2019, 143:650-659.
    Zhu F-l, Yang Z, Zhao J-p, et al. Microwave assisted preparation of expanded graphite/sulfur composites as cathodes for Li-S batteries[J]. New Carbon Materials, 2016, 31(2):199-204.
    Zhao T, Yang W, Ji X, et al. In-situ synthesis of expanded graphite embedded with CuO nanospheres coated with carbon for supercapacitors[J]. Applied Surface Science, 2018, 460:58-64.
    Cao J, He P, Mohammed M A, et al. Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide[J]. J Am Chem Soc, 2017, 139(48):17446-17456.
    Cooper A J, Wilson N R, Kinloch I A, et al. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations[J]. Carbon, 2014, 66:340-50.
    Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite[J]. Advances in Physics, 2006, 30(2):139-326.
    Peng T, Liu B, Gao X, et al. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite[J]. Applied Surface Science, 2018, 444:800-810.
    Li Jihui, Da Huifang, Liu Qian, et al. Preparation of sulfur-free expanded graphite with 320μm mesh of flake graphite[J]. Materials Letters, 2006, 60(29-30):3927-3930.
    Li J, Li J, Li M. Preparation of expandable graphite with ultrasound irradiation[J]. Materials Letters, 2007, 61(28):5070-5073.
    Lin S, Dong L, Zhang J, et al. Room-temperature intercalation and ~1000-fold chemical expansion for scalable preparation of high-quality graphene[J]. Chemistry of Materials, 2016, 28(7):2138-2146.
    Peng L, Xu Z, Liu Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nat Commun, 2015, 6:5716.
    Xing H W, Lang L, Jin X Z, et al. HClO4-graphite intercalation compound and its thermally exfoliated graphite[J]. Materials Letters, 2009, 63(18-19):1618-1620.
    Liu T, Zhang R, Zhang X, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119:544-547.
    JB/T 9141.1-2013柔性石墨板材第1部分密度测试方法[S]. 北京:中国机械工业出版社. 2013. (JB/T 9141.1-2013 Flexible graphite sheet-part 1:density test method[S]. Beijing:China Machine Press.2013.)
    Dimiev A M, Ceriotti G, Behabtu N, et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds[J]. ACS Nano, 2013, 7(3):2773-2780.
    Wang P, Sun H, Peng T. The evolution rule of three-dimensional structures of graphite during oxidation[J]. Nano, 2015, 10(01):1550014.
    Huang J, Tang Q, Liao W, et al. Green preparation of expandable graphite and its application in flame-resistance polymer elastomer[J]. Industrial & Engineering Chemistry Research, 2017, 56(18):5253-5261.
    Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5-6):51-87.
    Sun M, Wang G, Li X, et al. Irradiation preparation of reduced graphene oxide/carbon nanotube composites for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 245(1):436-444.
    Sun H J, Liu B, Peng T J, et al. Effect of reaction temperature on structure, appearance and bonding type of functionalized graphene oxide modified p-phenylene diamine[J]. Materials (Basel), 2018, 11(4):647.
    Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. J Am Chem Soc, 2014, 136(16):6083-6091.
    Kolthoff I M, Miller I K. The chemistry of persulfate. i. the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1[J]. Journal of the American Chemical Society, 1951, 73(7):1-30.
    Palme H. Studien über die Zersetzung der überschwefelsäure[J]. Zeitschrift für anorganische und allgemeine chemie, 1920, 112(1):97-130.
  • 加载中
图(1)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  44
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-05-15
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回