留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型炭功能材料在抗菌敷料中的应用研究进展

刘勇 李倩倩 张辉 于世平 张利 杨永珍

刘勇, 李倩倩, 张辉, 于世平, 张利, 杨永珍. 新型炭功能材料在抗菌敷料中的应用研究进展. 新型炭材料, 2020, 35(4): 323-335. doi: 10.1016/S1872-5805(20)60492-9
引用本文: 刘勇, 李倩倩, 张辉, 于世平, 张利, 杨永珍. 新型炭功能材料在抗菌敷料中的应用研究进展. 新型炭材料, 2020, 35(4): 323-335. doi: 10.1016/S1872-5805(20)60492-9
LIU Yong, LI Qian-qian, ZHANG Hui, YU Shi-ping, ZHANG Li, YANG Yong-zhen. Research progress on the use of micro/nano carbon materials for antibacterial dressings. New Carbon Mater., 2020, 35(4): 323-335. doi: 10.1016/S1872-5805(20)60492-9
Citation: LIU Yong, LI Qian-qian, ZHANG Hui, YU Shi-ping, ZHANG Li, YANG Yong-zhen. Research progress on the use of micro/nano carbon materials for antibacterial dressings. New Carbon Mater., 2020, 35(4): 323-335. doi: 10.1016/S1872-5805(20)60492-9

新型炭功能材料在抗菌敷料中的应用研究进展

doi: 10.1016/S1872-5805(20)60492-9
基金项目: 国家自然科学基金(U1710117);山西省重点研发计划(201703D321015-4);山西省优秀人才科技创新项目(201805D211001),山西省自然科学基金(201901D11388).
详细信息
    作者简介:

    刘勇,博士,副主任医师.E-mail:liuyong0517@163.com

    通讯作者:

    杨永珍,教授.E-mail:yyztyut@126.com;张利,博士,副主任医师.E-mail:13935127536@126.com

  • 中图分类号: R751

Research progress on the use of micro/nano carbon materials for antibacterial dressings

Funds: National Natural Science Foundation of China (U1710117), Shanxi Provincial Key Research and Development Program (201703D321015-4), Shanxi Provincial Excellent Talents Science and Technology Innovation Project (201805D211001),and Natural Science Foundation of Shanxi Province (201901D11388).
  • 摘要: 微/纳米炭功能材料(如活性炭纤维、纳米碳管、石墨烯、碳点和炭气凝胶)具有原料来源广泛、制备成本低以及生物相容性、物理化学性能和机械性能优异等优点,可以作为抗菌材料和载体赋予伤口敷料强大的杀菌活性,有望提高伤口的治疗效果。本文综述了基于微/纳米炭材料的高度创新抗菌剂和抗菌敷料,为治疗感染伤口开辟了新的途径,并提出了目前所存在的问题和解决对策,展望了未来碳基抗菌敷料的研究前景。
  • Simões D, Miguel S P, Ribeiro M P, et al. Recent advances on antimicrobial wound dressing:A review[J]. Eur J Pharm Biopharm, 2018, 127:130-141.
    Vig K, Chaudhari A, Tripathi S, et al. Advances in skin regeneration using tissue engineering[J]. Int J Molecular Sci, 2017, 18(4):789.
    Zhou Y, Xu L. Recent progress of antimicrobial wound dressings[J]. Chinese Journal of Injury Repair and Wound Healing (Electronic Edition), 2012, 07(3):307-311.
    Chen C, Qi F. Advances in studies of wound dressings[J]. Chinese Journal of Aesthetic Medicine, 2018, 27(2):22-24.
    Luo Z, Zhang J. Advances in the research of antibacterial I composite dressings based on bacterial cellulose[J]. Chinese Journal of Burns, 2018, 34(5):314-317.
    Liu M H, Duan X P, Li Y M, et al. Electrospun nanofibers for wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2017, 76:1413-1423.
    Liu Y, Zhou S, Gao Y, et al. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer[J]. Asian J Pharm Sci, 2019, 14(2):130-143.
    Hamedi H, Moradi S, Hudson S M, et al. Chitosan based hydrogels and their applications for drug delivery in wound dressings:A review[J]. Carbohydr Polym, 2018, 199:445-460.
    Yang K, Han Q, Chen B, et al. Antimicrobial hydrogels:promising materials for medical application[J]. Int J Nanomedicine, 2018, 13:2217-2263.
    Chang C, Chen Sheng-jie, Duan S, et al. Research status and application prospects of biomedical hydrogel dressings[J]. China Textile Leader, 2018, 894(05):47-51.
    Zhang H Q. The preparation and cytotoxicity of a hydrogel wound dressing with temperature-sensitive & antibacterial properties[D]. Nanchang University, 2018.
    Kamoun E A, Kenawy E S, Chen X. A review on polymeric hydrogel membranes for wound dressing applications:PVA-based hydrogel dressings[J]. J Adv Res, 2017, 8(3):217-233.
    Miguel S P, Sequeira R S, Moreira A F, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process[J]. Eur J Pharm Biopharm, 2019, 139:1-22.
    Shams E, Yeganeh H, Naderi-Manesh H, et al. Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings:In vitro and in vivo evaluations[J]. J Mater Sci Mater Med, 2017, 28(5):75.
    Vowden K, Vowden P. Wound dressings:Principles and practice[J]. Surgery (Oxford), 2017, 35(9):489-494.
    Ghosal K, Agatemor C, Špitálsky Z, et al. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites[J]. Chem Eng J, 2019, 358:1262-1278.
    Macewan M R, Macewan S, Kovacs T R, et al. What makes the optimal wound healing material? A review of current science and introduction of a synthetic nanofabricated wound care scaffold[J]. Cureus, 2017, 9(10):1736.
    Wang Y. Nano crystalline silver activated carbon fiber dressing research in the treatment of pressure ulcers[D]. The Second Military Medical University, 2014.
    Chen S X, Liu J R, Zeng H M. Comparison of the actibacterial activity of several kinds of activated silver-supporting carbon fibers[J]. New Carbon Materials, 2002, 17(1):26-29.
    Mao Y, Liu D. Antibacterial properties, mechanism and applications of carbon nanotubes[J]. Journal of Functional Materials, 2018, 49(10):10039-10042.
    Shi L F, Liu J Z, Yang J H, et al. Langmuir-Blodgett assembly of transparent graphene oxide-silver microwire hybrid films with an antibacterial property[J]. New Carbon Materials, 2017, 32(4):344-351.
    Zhu Z, Huang Q. Research progress on antibacterial mechanisms of graphene and graphene-based nanomaterials[J]. Journal of Biology, 2018, 35(2):67-72.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Anand A, Unnikrishnan B, Wei S C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents-a minireview[J]. Nanoscale Horizons, 2019, 4(1):117-137.
    Ruan Z, Zhao C, Liu B. Anticacterial activity of carbon quantum dots:Research progress[J]. Chinese Journal of Microecology, 2019, 31(02):229-238.
    Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon, 2004, 42(15):3209-3216.
    Li L G, Chai J K, Guo Z R, et al. Application of carbon fiber dressing on burn wounds[J]. Chinese Journal of Surgery, 2006, 44(15):1047-1049.
    Yang X, Liu J, Zhang H, et al. Clinical application of composite carbon fiber dressing[J]. Chinese Journal of Burns, 2002, 18(6):378-378.
    Huang W Y, Yeh C L, Lin J H, et al. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing[J]. J Mater Sci:Mater M, 2012, 23(6):1465-1478.
    Murphy N. Reducing infection in chronic leg ulcers with an activated carbon cloth dressing[J]. Br J Nur, 2016, 25(12):S38-S44.
    Ashfaq M, Verma N, Khan S. Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi-and extensively drug-resistant strains[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77:630-641.
    Hui Z, Zhang X, Yu J, et al. Carbon nanotube-hybridized supramolecular hydrogel based on PEO-b-PPO-b-PEO/α-cyclodextrin as a potential biomaterial[J]. J Appl Polym Sci, 2010, 116(4):1894-1901.
    Shi H, Liu H, Luan S, et al. Effect of polyethylene glycol on the antibacterial properties of polyurethane/carbon nanotube electrospun nanofibers[J]. RSC Adv, 2016, 6(23):19238-19244.
    Liu C, Shi H, Yang H, et al. Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance[J]. Mater Design, 2017, 120:128-134.
    Yu S, Zhang Y, Chen L, et al. Antitumor effects of carbon nanotube-drug complex against human breast cancer cells[J]. Exp Ther Med, 2018, 16(2):1103-1110.
    Nowacki M, Wi'sniewski M, Werengowska-Cie'cwierz K, et al. New application of carbon nanotubes in haemostatic dressing filled with anticancer substance[J]. Biomed Pharmacother, 2015, 69:349-354.
    Yu S P, Su X D, Du J L, et al. The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells[J]. New Carbon Materials, 2018, 33(1):36-45.
    Liao J L, Zhong S, Wang S H, et al. Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing[J]. Exp Ther Med, 2017, 14:2341-2348
    Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7):4317-4323.
    Zhou Y, Chen R, He T, et al. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing[J]. ACS Appl Mater Interfaces, 2016, 8(24):15067-15075.
    Fan Z, Liu B, Wang J, et al. A Novel Wound dressing based on Ag/graphene polymer hydrogel:Effectively kill bacteria and accelerate wound healing[J]. Adv Funct Mater, 2014, 24(25):3933-3943.
    Mitra T, Manna P J, Raja S T K, et al. Curcumin loaded nano graphene oxide reinforced fish scale collagen-a 3D scaffold biomaterial for wound healing applications[J]. RSC Adv, 2015, 5(119):98653-98665.
    Mahmoudi N, Eslahi N, Mehdipour A, et al. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes:Pre-clinical and pathological studies in animal models[J]. J Mater Sci Mater Med, 2017, 28(5):73.
    Misra S K, Ramteke P W, Patil S, et al. Tolnaftate-graphene composite-loaded nanoengineered electrospun scaffolds as efficient therapeutic dressing material for regimen of dermatomycosis[J]. Appl Nanosci, 2018, 8(7):1629-1640.
    Li C, Ye R, Bouckaert J, et al. Flexible nanoholey patches for antibiotic-free treatments of skin infections[J]. ACS Appl Mater Interfaces, 2017, 9(42):36665-36674.
    Sun H, Zhao A, Gao N, et al. Deciphering a nanocarbon-based artificial peroxidase:Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots[J]. Angewandte Chemie, 2015, 54(24):7176-7180.
    Sun H, Gao N, Dong K, et al. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6):6202-6210.
    Cui B, Feng X T, Zhang F, et al. The use of carbon quantum dots as fluorescent materials in white LEDs[J]. New Carbon Materials, 2017, 32(5):385-401.
    Hu C, Li M, Qiu J, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chem Soc Rev, 2019, 48:2315-2337.
    Omidi M, Yadegari A, Tayebi L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel[J]. RSC Adv, 2017, 7(18):10638-10649.
    Zhang S, Wu D, Lin W, et al. Adsorption and antibacterial activity of silver-dispersed carbon aerogels[J]. J Appl Polym Sci, 2010, 102(2):1030-1037.
    Concha M, Vidal A, Giacaman A, et al. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization:Biological properties toward wound healing[J]. J Biomed Mater Res B, 2018, 106(6):2464-2471.
    Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon, 2004, 42(15):3209-3216.
    Zhen Y D, Yan N. Xie Y J, et al. A preparation method of antibacterial nanometer cellulose carbon aerogel with a novel high performance[P]. 2015. CN105053007A.
  • 加载中
图(1)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  157
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-29
  • 修回日期:  2020-07-02
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回