留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维高导热炭/炭复合材料的制备、结构及性能

李保六 郭建光 徐兵 徐辉涛 董志军 李轩科

李保六, 郭建光, 徐兵, 徐辉涛, 董志军, 李轩科. 三维高导热炭/炭复合材料的制备、结构及性能[J]. 新型炭材料, 2020, 35(5): 567-575. doi: 10.1016/S1872-5805(20)60510-8
引用本文: 李保六, 郭建光, 徐兵, 徐辉涛, 董志军, 李轩科. 三维高导热炭/炭复合材料的制备、结构及性能[J]. 新型炭材料, 2020, 35(5): 567-575. doi: 10.1016/S1872-5805(20)60510-8
LI Bao-liu, GUO Jian-guang, XU Bing, XU Hui-tao, DONG Zhi-jun, LI Xuan-ke. Preparation, microstructure and properties of three-dimensional carbon/carbon composites with high thermal conductivity[J]. NEW CARBON MATERIALS, 2020, 35(5): 567-575. doi: 10.1016/S1872-5805(20)60510-8
Citation: LI Bao-liu, GUO Jian-guang, XU Bing, XU Hui-tao, DONG Zhi-jun, LI Xuan-ke. Preparation, microstructure and properties of three-dimensional carbon/carbon composites with high thermal conductivity[J]. NEW CARBON MATERIALS, 2020, 35(5): 567-575. doi: 10.1016/S1872-5805(20)60510-8

三维高导热炭/炭复合材料的制备、结构及性能

doi: 10.1016/S1872-5805(20)60510-8
基金项目: 国家自然科学基金(U1864207,U1960106).
详细信息
    作者简介:

    李保六,博士研究生.E-mail:libl151300373@sina.com

    通讯作者:

    李轩科,教授,博士.E-mail:xkli8524@sina.com

  • 中图分类号: TQ342.742

Preparation, microstructure and properties of three-dimensional carbon/carbon composites with high thermal conductivity

Funds: National Natural Science Foundation of China (U1864207, U1960106).
  • 摘要: 采用连续沥青基炭纤维与商业PAN基炭纤维的混编制备了三维炭/炭复合材料预制体,通过多次化学气相渗透(CVI)、液压浸渍(LPI)工艺对其进行增密处理和一系列的炭化和石墨化处理获得高导热三维炭/炭复合材料。在此典型结构中,沥青基炭纤维沿xy方向水平正交排布,而商业PAN基炭纤维沿z方向双向贯通排布。研究了炭/炭复合材料的显微结构以及炭纤维和热解炭对炭/炭复合材料热导率和力学性能的相对贡献。CVI热解炭具有高结晶度并且沿纤维轴高度择优取向。通过3CVI和3CVI+4LPI工艺制备的炭/炭复合材料的密度分别达到了1.58和1.84 g/cm3。所制备的炭/炭复合材料沿xy方向分别具有115.9 W/m·K(3CVI)和234.7 W/m·K(3CVI+4LPI)的高热导率,沿z方向的热导率分别只有18.6(3CVI)和41.5 W/m·K(3CVI+4LPI)。热扩散和热导率主要依赖于炭/炭复合材料中的连续性沥青基炭纤维。通过PAN基炭纤维的引入和后续增密过程,三维炭/炭复合材料的力学性能相对于一维炭/炭复合材料和二维炭/炭复合材料显著提高。
  • Hino T, Akiba M. Japanese development of fusion reaction plas-ma components[J]. Fusion Engineering and Design, 2000, 49(2):97-105.
    Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials-I. Unidirectional composites[J]. Carbon, 2006, 44(3):480-487.
    Yin X, Cheng L, Zhang L, et al. Oxidation behavior of three-dimensional woven C/SiC composites[J]. Materials Science & Technology, 2013, 17(6):727-730.
    Yu S, Zhang F Q, Xiong X, et al. Tribological properties of carbon/carbon composites with various pyrolytic carbon microstructures[J]. Wear, 2013, 304(40):103-108.
    Tong Y G, Bai S X, Zhang H, et al. Effect of C/C preform density on microstructure and mechanical properties of C/C-SiC composites prepared by alloyed reactive melt infiltration[J]. Materials Science & Technology, 2013, 28(12):1505-1512.
    Schmidt D L, Davison K E, Theibert L S. Unique application of carbon-carbon composite materials (Part two)[J]. Sampe Journal, 1999, 35(4):51-63.
    Robin L. Applications of carbon/carbon in:J.D. Buckely, D.D. Edie (Eds.), Carbon/carbon Materials and Composites, NASA Reference Publication[M]. Hampton, 1992, pp. 1254-1259.
    Lavin J G, Boyington D R, Nysten B, et al. The correlation of thermal conductivity with electrical resistivity in mesophase pitch-based carbon fiber[J]. Carbon, 1993, 31(6):1001-1002.
    Nysten B, Piraux L, Issi J P. Additional contribution to the thermal conductivity of graphites due to intercalation[J]. Synthetic Metals, 1985, 12(1-2):505-510.
    Minus M, Kumar S. The processing, properties, and structure of carbon fibers[J]. JOM:the journal of the Mineral, Metal & Materials Society, 2005, 57(2):52-58.
    Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials I. Unidirectional composites[J]. Carbon, 2006, 44(3):480-487.
    Ma Z K, Shi J L, Song Y, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesophase pitch-based fibers[J]. Carbon, 2006, 44(7):1298-352.
    Ma Z K, Liu L, Lian F, et al. Three-dimensional thermal conductive behavior of graphite materials sintered from ribbon mesophase pitch-based fibers[J]. Mater Lett, 2012, 66(1):99-101.
    Yuan G M, Li X K, Dong Z J, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon, 2014, 68:413-425.
    Zhang X, Li X K, Yuan G M, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon, 2017, 114:59-69.
    Lu S L, Blanco C, Rand B. Large diameter carbon fibres from mesophase pitch[J]. Carbon, 2002, 40(12):2109-2116.
    Takahashi H, Kuroda H, Akamatu H. Correlation between stacking order and crystallite dimensions in carbons[J]. Carbon, 1965, 2(4):432-433.
    Maire J, Mering J. Graphitization of soft carbons, in:P.L. Walker (Ed.), Chemistry and Physics of Carbon[M]. Marcel Dekker, New York, 1970, pp. 125-190.
    Yuan G M, Li X K, Dong Z J, et al. The structure and properties of ribbon-shaped carbon fibers with high orientation[J]. Carbon, 2014, 68:426-439.
    Norley J. The role of natural graphite in electronics cooling[J]. Electron Cool, 2001, 7:50-51.
    Jenkins G M. Polymeric Carbons[M]. Cambridge University Press, Cambridge, 1976, p. 84.
    Gallego N C, Edie D D. Structure-property relationship for high thermal conductivity carbon fibers[J]. Composites:Part A, 2001, 32(8):1031-1038.
    Robinson K E, Edie D D. Microstructure and texture of pitch-based ribbon fibers for thermal management[J]. Carbon, 1996, 34(1):13-36.
    Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon, 1996, 34(8):941-956.
    Mchugh J J, Edie D D. The orientation of mesophase pitch during fully developed channel flow[J]. Carbon, 1996, 34(11):1315-1322.
    Mochida I, Yoon S H, Korai Y. Control of transversal texture in circular mesophase pitch-based carbon fiber using noncircular spinning nozzles[J]. J Mater Sci, 1993, 28(9):2331-2336.
    Ogale A A, Lin C, Anderson D P, et al. Orientation and dimensional changes in mesophase pitch-based carbon fibers[J]. carbon, 2002, 40(8):1308-1319.
    White J L, Buechler M. Mesophase mechanisms in the formation of graphite microstructures[C]. Preprint for Am Chem Soc Symp on Petroleum Derived Carbon, 1984, 29(2):388-397.
    Zhang X, Fujiware S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics, 2000, 21(4):966-980.
  • 加载中
图(1)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  44
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-04-30
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回