留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同基体炭结构炭/炭复合材料的力学与导热性能

刘霞 邓海亮 郑金煌 孙茗 崔红 张晓虎 宋广生

刘霞, 邓海亮, 郑金煌, 孙茗, 崔红, 张晓虎, 宋广生. 不同基体炭结构炭/炭复合材料的力学与导热性能[J]. 新型炭材料, 2020, 35(5): 576-584. doi: 10.1016/S1872-5805(20)60511-X
引用本文: 刘霞, 邓海亮, 郑金煌, 孙茗, 崔红, 张晓虎, 宋广生. 不同基体炭结构炭/炭复合材料的力学与导热性能[J]. 新型炭材料, 2020, 35(5): 576-584. doi: 10.1016/S1872-5805(20)60511-X
LIU Xia, DENG Hai-liang, ZHENG Jin-huang, SUN Ming, CUI Hong, ZHANG Xiao-hu, SONG Guang-sheng. Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures[J]. NEW CARBON MATERIALS, 2020, 35(5): 576-584. doi: 10.1016/S1872-5805(20)60511-X
Citation: LIU Xia, DENG Hai-liang, ZHENG Jin-huang, SUN Ming, CUI Hong, ZHANG Xiao-hu, SONG Guang-sheng. Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures[J]. NEW CARBON MATERIALS, 2020, 35(5): 576-584. doi: 10.1016/S1872-5805(20)60511-X

不同基体炭结构炭/炭复合材料的力学与导热性能

doi: 10.1016/S1872-5805(20)60511-X
基金项目: 国家自然科学基金资助项目(51972002);装备预研基金(JZX7Y20190262004901).
详细信息
    作者简介:

    刘霞,博士,讲师.E-mail:ning25531@163.com

    通讯作者:

    邓海亮,博士,教授.E-mail:dhl221@126.com

  • 中图分类号: TB332

Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures

Funds: National Natural Science Foundation of China (51972002), Equipment Advanced Research Foundation of China (JZX7Y20190262004901).
  • 摘要: 采用浸渍-炭化、等温及薄膜沸腾CVI法,分别以煤沥青、糠酮树脂、天然气和二甲苯为前驱体制备了密度为1.75~1.81 g/cm3的炭/炭(C/C)复合材料,对比研究了4种材料的力学与导热性能。结果表明,基体为天然气热解炭(PyC)时材料的弯曲和层间剪切强度较高,分别达到208.7和26.4 MPa,沥青炭为基体时弯曲(125.8 MPa)和层间剪切强度(20.1 MPa)较低。天然气和二甲苯PyC为基体的材料韧性较好。二甲苯PyC呈粗糙层结构,材料具有高的石墨化度、表观微晶尺寸及热导率,其平行和垂直方向的热导率分别达到148.2和75.4 W/(m·K),约为树脂炭基体材料的1.5倍。天然气PyC可作为高强度要求的材料基体,二甲苯PyC有利于提高材料导热与力学性能。
  • Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon, 2014, 68(3): 413-425.
    Feng Z H, Fan Z, Kong Q, et al. Effect of high temperature treatment on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity[J]. New Carbon Materials, 2014, 29(5): 357-362.
    Manocha L M, Warrier A, Manocha S D. et al. Thermophysical properties of densified pitch based carbon/carbon materials-II. Bidirectional composites[J]. Carbon, 2006, 44(3): 488-495.
    Chen J, Xiong X, Xiao P. Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes[J]. Materials and Design, 2009, 30 (4):1413-1416.
    Luo R, Liu T, Li J, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004, 42(14): 2887-2895.
    Fitzer E, Manocha L M. Carbon Reinforcements and Carbon/Carbon Composites[M]. Springer Verlag, Berlin, Heideberg, 1998: 237-259.
    Oberlin A. Pyrocarbons[J]. Carbon, 2002, 40(1): 7-24.
    Zheng J H, Deng H L, Yin Z Y, et al. Microstructure and mechanical properties of carbon/carbon composites densified with pyrocarbon from xylene using LaCl3 as catalyst[J]. New Carbon Materials, 2016, 31(5): 510-517.
    Xu G, Li H, Bai R, et al. Influence of the matrix texture on the fracture behavior of 2D carbon/carbon composites[J]. Materials Science and Engineering A, 2008, 478(1): 319-323.
    Li H, Li H, Lu J, et al. Improvement in toughness of carbon/carbon composites using multiple matrixes[J]. Materials Science and Engineering A, 2011, 530(1): 57-62.
    Li H L, Li H J, Lu J H, et al. Effects of a predeposited pyrocarbon layer on the microstructure and mechanical properties of carbon/carbon composites[J]. Materials Science and Engineering A, 2012, 556(11): 295-300.
    Michalowski J, Mikociak D, Konsztowicz K J, et al. Thermal conductivity of 2D C-C composites with pyrolytic and glass-like carbon matrices[J]. Journal of Nuclear Materials, 2009, 393(1): 47-53.
    Zhang J, Luo R, Xiang Q, et al. Compressive fracture behavior of 3D needle-punched carbon/carbon composites[J]. Materials Science and Engineering A, 2011, 528(15): 5002-5006.
    Zhang J, Luo R, Zhang Y, et al. Effect of isotropic interlayers on the mechanical and thermal properties of carbon/carbon composites[J]. Materials Letters, 2010, 64(13):1536-1538.
    Deng H, Li K, Li H, et al. Densification behavior and microstructure of carbon/carbon composites prepared by chemical vapor infiltration from xylene at temperatures between 900 and 1 250 ℃[J]. Carbon, 2011, 49(7): 2561-2570.
    Li K, Deng H, Cui H, et al. Floating catalyst chemical vapor infiltration of nanofilamentous carbon reinforced carbon/carbon composites-Densification behavior and matrix microstructure[J]. Carbon, 2014, 75(10): 353-365.
    Rovillain D, Trinquecoste M, Bruneton E, et al. Film boiling chemical vapor infiltration: An experimental study on carbon/carbon composite materials[J]. Carbon, 2001, 39(9): 1355-1365.
    Deng H, Li K, Li H, et al. Densification of C/C composites using film boiling chemical vapor infiltration with two heaters[J]. New Carbon Materials, 2013, 28(6): 442-447.
    Li K, Deng H, Li H, et al. Microstructure and mechanical properties of carbon/carbon composites doped with LaCl3[J]. Materials Science and Engineering A, 2011, 529(1):177-183.
    Deng H, Li K, Zheng J, et al. Floating catalyst chemical vapor infiltration of nanofilamentous carbon reinforced carbon/carbon composites-Integrative improvement on the mechanical and thermal properties[J]. Journal of the European Ceramic Society, 2018, 38: 3793-3803.
    Deng H L, Li K Z, Li H J, et al. Microstructure and mechanical behavior of carbon/carbon composites prepared from xylene pyrolysis[J]. Journal of Solid Rocket Technology, 2011, 34(2): 241-246.
    Chioujones K M, Ho W, Fathollahi B, et al. Microstructural analysis of in situ mesophase transformation in the fabrication of carbon-carbon composites[J]. Carbon, 2006, 44(2): 284-292.
    Granoff B. Kinetics of graphitization of carbon-felt/carbon-matrix composites[J]. Carbon, 1974, 12(4): 405-416.
    Li W, Li H J, Wei J F, et al. Effect of heat treatment on the microstructure of C/C composites with different high textured pyrolytic carbon contents[J]. New Carbon Materials, 2014, 29(5): 369-373.
    Guellali M, Oberacker R, Hoffmann M, et al. Influence of the matrix microstructure on the mechanical properties of CVI-infiltrated carbon fiber felts[J]. Carbon, 2005, 43(9): 1954-1960.
    Li Y, Huang Q Z, Wang L S. Effect of resin impregnation on the mechanical properties of C/C composites[J]. New Carbon Materials, 2002, 18(2): 117-121.
    Rodriguez A J, Guzman M E, Lim C S, et al. Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics[J]. Carbon, 2011, 49(3): 937-948.
    Gao X Q, Guo Q G, Shi J L, et al. The fabrication of chopped carbon fiber-carbon composites and their thermal/electrical conductivity and microstructure[J]. New Carbon Materials, 2005, 20(1): 18-22.
    Zhao J G, Li K Z, Li H J, et al. Research on the thermal conductivity of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 501-504.
    Liu X R, Jin M L, Zhang Z, et al. High temperature thermophysical properties of carbon/carbon composites prepared by chemical liquid-vapor deposition[J]. New Carbon Materials, 2010, 25(5): 343-347.
  • 加载中
图(1)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  25
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-27
  • 修回日期:  2018-11-05
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回