留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤基荧光碳点的制备与应用研究进展

蔡婷婷 刘斌 庞尔楠 任卫杰 李世嘉 胡胜亮

蔡婷婷, 刘斌, 庞尔楠, 任卫杰, 李世嘉, 胡胜亮. 煤基荧光碳点的制备与应用研究进展[J]. 新型炭材料, 2020, 35(6): 646-666. doi: 10.1016/S1872-5805(20)60520-0
引用本文: 蔡婷婷, 刘斌, 庞尔楠, 任卫杰, 李世嘉, 胡胜亮. 煤基荧光碳点的制备与应用研究进展[J]. 新型炭材料, 2020, 35(6): 646-666. doi: 10.1016/S1872-5805(20)60520-0
CAI Ting-ting, LIU Bin, PANG Er-nan, REN Wei-jie, LI Shi-jia, HU Sheng-liang. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. NEW CARBON MATERIALS, 2020, 35(6): 646-666. doi: 10.1016/S1872-5805(20)60520-0
Citation: CAI Ting-ting, LIU Bin, PANG Er-nan, REN Wei-jie, LI Shi-jia, HU Sheng-liang. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. NEW CARBON MATERIALS, 2020, 35(6): 646-666. doi: 10.1016/S1872-5805(20)60520-0

煤基荧光碳点的制备与应用研究进展

doi: 10.1016/S1872-5805(20)60520-0
基金项目: 山西省青年三晋学者计划;山西省高等学校中青年拔尖创新人才计划;山西省重点研发计划(国际合作)(201903D421082,201803D421091);山西省高等学校科技成果转化项目;国家自然科学基金(U1510125,515022709).
详细信息
    作者简介:

    蔡婷婷.E-mail:dbdxctt@163.com

    通讯作者:

    胡胜亮,教授.E-mail:hsliang@yeah.net

  • 中图分类号: TQ127.1+1

A review on the preparation and applications of coal-based fluorescent carbon dots

Funds: Sanjin Scholars Program of Shanxi Province, China; Program for the Innovative Talents of Higher Education Institutions of Shanxi, China; Key Research and Development Plan (International Cooperation) of Shanxi Province (201903D421082, 201803D421091); Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (TSTAP), Programs of Higher Education Institutions in Shanxi (TSTAP), China; National Natural Science Foundation of China (U1510125, 515022709).
  • 摘要: 煤炭的深加工与功能化是解决目前煤炭应用瓶颈的重要措施。近年来,新兴碳质纳米材料家族中的荧光碳点因其良好的生物相容性、元素无毒及可调节的荧光发射、优异的能量存储与转移等多种独特性能,在生物成像、化学传感、太阳能转化等众多领域表现出了巨大的应用前景。煤和煤的衍生物中含有大量的石墨结构微晶与稠环芳环团簇,由密集分布的碳氧键连接在一起,可以通过化学、电化学或物理方法将其打开,剥离出荧光碳点,所以分布范围广、储量大、价格低廉的煤炭是制备碳点的理想源材料。本文就煤基碳点的制备方法及其优缺点进行了总结,分析了煤及其衍生物种类与制备条件等对荧光碳点产物性能的影响。概述了煤基碳点及其复合体特性,以及它们在化学检测、生物成像、光催化等方面的应用,重点总结了煤基碳点对构筑异质结构性能的影响。最后,针对煤基碳点的发展前景进行了展望。通过该综述期望能为煤基碳点的制备与应用提供关键信息,从而为煤炭综合利用提供一种经济且可持续的选择。
  • Höök M, Zittel W, Schindler J, et al. Global coal production outlooks based on a logistic model[J]. Fuel, 2010, 89(11):3546-3558.
    Li S, Chang M, Li H, et al. Chemical compositions and source apportionment of PM2.5 during clear and hazy days:Seasonal changes and impacts of Youth Olympic Games[J]. Chemosphere, 2020, 256:127163-127172.
    Hoang V C, Hassan M, Gomes V G. Coal derived carbon nanomaterials-recent advances in synthesis and applications[J]. Applied Materials Today, 2018, 12:342-358.
    Kang Z, Lee S T. Carbon dots:Advances in nanocarbon applications[J]. Nanoscale, 2019, 11(41):19214-19224.
    He X, Ma H, Wang J, et al. Porous carbon nanosheets from coal tar for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 357:41-46.
    Wang Y, Chen X, Ding M, et al. Oxidation of coal pitch by H2O2 under mild conditions[J]. Energy & Fuels, 2018, 32(1):796-800.
    Liu Q, Zhang J, He H, et al. Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation[J]. Nanomaterials, 2018, 8(10):844-853.
    Geng B, Yang D, Zheng F, et al. Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging[J]. New Journal of Chemistry, 2017, 41(23):14444-14451.
    Jia J, Sun Y, Zhang Y, et al. Facile and efficient fabrication of bandgap tunable carbon quantum dots derived from anthracite and their photoluminescence properties[J]. Frontiers in Chemistry, 2020, 8:123-132.
    Saikia M, Das T, Dihingia N, et al. Formation of carbon quantum dots and graphene nanosheets from different abundant carbonaceous materials[J]. Diamond and Related Materials, 2020, 106:107813-107822.
    Senthil K T, Suresh R, Dharmalingam P. Fluorescent carbon nano dots from lignite:Unveiling the impeccable evidence for quantum confinement[J]. Physical chemistry chemical physics, 2016, 18(17):12065-12073.
    Ye R, Peng Z, Metzger A, et al. Bandgap engineering of coal-derived graphene quantum dots[J]. ACS Applied Materials & Interfaces, 2015, 7(12):7041-7048.
    Li X, Rui M, Song J, et al. Carbon and graphene quantum dots for optoelectronic and energy devices:a review[J]. Advanced Functional Materials, 2015, 25(31):4929-4947.
    Dong Y, Lin J, Chen Y, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale, 2014, 6(13):7410-7415.
    Tetsuka H, Asahi R, Nagoya A, et al. Optically tunable amino-functionalized graphene quantum dots[J]. Advanced Materials, 2012, 24(39):5333-5338.
    Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381.
    Peng H, Li Y, Jiang C L, et al. Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors[J]. Carbon, 2016, 100:386-394.
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126:12736-12737.
    Sun Y, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society 2006, 128:7756-7757.
    Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communication, 2013, 4:2943-2949.
    Fang J, Zhuo S J, Zhu C Q. Fluorescent sensing platform for the detection of p-nitrophenol based on Cu-doped carbon dots[J]. Optical Materials, 2019, 97:109396-109403.
    Daugherty M C, Gu S Y, Aaron D S, et al. Graphene quantum dot-decorated carbon electrodes for energy storage in vanadium redox flow batteries[J]. Nanoscale, 2020, 12(14):7834-7842.
    Tsai K A, Hsieh P Y, Lai T H, et al. Nitrogen-doped graphene quantum dots for remarkable solar hydrogen production[J]. Acs Appl Energ Mater, 2020, 3(6):5322-5332.
    Zhang W J, Li N, Chang Q, et al. Making a cup of carbon dots for ratiometric and colorimetric fluorescent detection of Cu2+ ions[J]. Colloid Surface A, 2020, 586:124233-124241.
    Wang R, Lu K, Tang Z, et al. Recent progress in carbon quantum dots:Synthesis, properties and applications in photocatalysis[J]. Journal of Materials Chemistry A, 2017, 5(8):3717-3734.
    Wang Y, Hu A. Carbon quantum dots:Synthesis, properties and applications[J]. Journal of Materials Chemistry C, 2014, 2(34):6921-6939.
    Tian R, Zhong S, Wu J, et al. Solvothermal method to prepare graphene quantum dots by hydrogen peroxide[J]. Optical Materials, 2016, 60:204-208.
    Zhu J, Zhang S, Wang L, et al. Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics[J]. Carbon, 2018, 129:54-62.
    Awati A, Maimaiti H, Xu B, et al. A comparative study on the preparation methods and properties of coal-based fluorescent carbon nanoparticles[J]. Surface and Interface Analysis, 2019, 52(3):98-109.
    Liu Z, Liu Z, Zong Z, et al. GC/MS analysis of water-soluble products from the mild oxidation of Longkou brown coal with H2O2[J]. Energy & Fuels, 2003, 17:424-426.
    Hu S, Zhang W, Chang Q, et al. A chemical method for identifying the photocatalytic active sites on carbon dots[J]. Carbon, 2016, 103:391-393.
    Hu S, Wei Z, Chang Q, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Applied Surface Science, 2016, 378:402-407.
    Meng X, Chang Q, Xue C, et al. Full-colour carbon dots:From energy-efficient synthesis to concentration-dependent photoluminescence properties[J]. Chemical Communications, 2017, 53(21):3074-3077.
    Saikia M, Hower J C, Das T, et al. Feasibility study of preparation of carbon quantum dots from Pennsylvania anthracite and Kentucky bituminous coals[J]. Fuel, 2019, 243:433-440.
    Sun H, Chen D, Wu Y, et al. High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process[J]. Journal of Materials Chemistry C, 2017, 5(8):1880-1884.
    Li D, Qin W, Zhang S, et al. Effect of UV-ozone process on the ZnO interlayer in the inverted organic solar cells[J]. RSC Advances, 2017, 7(10):6040-6045.
    Pan Y, Wu Y, Hsain H A, et al. Synergetic modulation of the electronic structure and hydrophilicity of nickel-iron hydroxide for efficient oxygen evolution by UV/ozone treatment[J]. Journal of Materials Chemistry A, 2020:13437-13442.
    Xue H, Yan Y, Hou Y, et al. Novel carbon quantum dots for fluorescent detection of phenol and insights into the mechanism[J]. New Journal of Chemistry, 2018, 42(14):11485-11492.
    Li M, Yu C, Hu C, et al. Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield[J]. Chemical Engineering Journal, 2017, 320:570-575.
    He M, Guo X, Huang J, et al. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation[J]. Carbon, 2018, 140:508-520.
    Hu C, Yu C, Li M, et al. Nitrogen-doped carbon dots decorated on graphene:A novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction[J]. Chemical Communications 2015, 51(16):3419-3422.
    Zhang Y, Li K, Ren S, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(II) detection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11):9793-9799.
    Kang S, Kim K M, Jung K, et al. Graphene oxide quantum dots derived from coal for bioimaging:Facile and green approach[J]. Scientific Reports, 2019, 9(1):4101-4107.
    Sasikala S P, Henry L, Tonga G Y, et al. High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids[J]. ACS Nano, 2016, 10(5):5293-5303.
    Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection[J]. Small, 2014, 10(23):4926-4933.
    Das T, Saikia B K, Dekaboruah H P, et al. Blue-fluorescent and biocompatible carbon dots derived from abundant low-quality coals[J]. J Photochem Photobiol B, 2019, 195:1-11.
    Algarra M, Campos B B, Radoti? K, et al. Luminescent carbon nanoparticles:Effects of chemical functionalization, and evaluation of Ag+ sensing properties[J]. Journal of Materials Chemistry A, 2014, 2(22):8342-8351.
    Gao X, Lu Y, Zhang R, et al. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence[J]. Journal of Materials Chemistry C, 2015, 3(10):2302-2309.
    Chen C, Tsai Y, Chang C. Evaluation of the dialysis time required for carbon dots by HPLC and the properties of carbon dots after HPLC fractionation[J]. New Journal of Chemistry, 2019, 43(16):6153-6159.
    Wang L, Wang Y, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties[J]. Nature Communication, 2014, 5:5357-5365.
    Xin Yan, Xiao Cui, Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of American Chemistry Society, 2010, 132:5944-5945.
    Zhang Q H, Sun X F, Ruan H, et al. Synthesis and properties of carbon quantum dots from flue ash of biomass[J]. New Carbon Materials, 2018, 33:571-577.
    Pan D, Zhang J, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6):734-738.
    Zhu S, Zhang J, Liu X, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission[J]. RSC Advances, 2012, 2(7):2717-2720.
    Singamaneni S R, van Tol J, Ye R, et al. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots[J]. Applied Physics Letters, 2015, 107(21):212402-212406.
    Wei J, Liu B, Zhang X, et al. One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection[J]. New Carbon Materials, 2018, 33:333-340.
    Hu S, Meng X, Tian F, et al. Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing[J]. Journal of Materials Chemistry C, 2017, 5(38):9849-9853.
    Pandey M, Balachandran M. Green luminescence and irradiance properties of carbon dots cross-linked with polydimethylsiloxane[J]. The Journal of Physical Chemistry C, 2019, 123(32):19835-19843.
    Kovalchuk A, Huang K, Xiang C, et al. Luminescent polymer composite films containing coal-derived graphene quantum dots[J]. ACS Applied Materials & Interfaces, 2015, 7(47):26063-26068.
    Lee H Y, Yen S W, Lee C T. Polymer hybrid white quantum dots light-emitting diodes with a nanostructured electron injection layer[J]. Optics Express, 2020, 28(12):17299-17306.
    Feng X, Zhang Y. A simple and green synthesis of carbon quantum dots from coke for white light-emitting devices[J]. RSC Advances, 2019, 9(58):33789-33793.
    Loo A H, Bonanni A, Pumera M. Impedimetric thrombin aptasensor based on chemically modified graphenes[J]. Nanoscale, 2012, 4(1):143-147.
    Yáñez-Sedeño P, Agüí L, Villalonga R, et al. Biosensors in forensic analysis. A review[J]. Analytica Chimica Acta, 2014, 823:1-19.
    Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 52(14):3953-3957.
    Yew Y T, Loo A H, Sofer Z, et al. Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection[J]. Applied Materials Today, 2017, 7:138-143.
    Ghorai S, Roy I, De S, et al. Exploration of the potential efficacy of natural resource-derived blue-emitting graphene quantum dots in cancer therapeutic applications[J]. New Journal of Chemistry, 2020, 44(14):5366-5376.
    Chang Q, Song Z, Xue C, et al. Carbon dot powders for photocatalytic reduction of quinones[J]. Materials Letters, 2018, 218:221-224.
    Maimaiti H, Awati A, Zhang D, et al. Synthesis and photocatalytic CO2 reduction performance of aminated coal-based carbon nanoparticles[J]. RSC Advances, 2018, 8(63):35989-35997.
    Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials:possibilities and challenges[J]. Advanced Materials, 2012, 24(2):229-251.
    Hu S, Yang W, Li N, et al. Carbon-dot-based heterojunction for engineering band-edge position and photocatalytic performance[J]. Small, 2018, 14(44):1803447-1803454.
    Sajan C P, Wageh S, Al-Ghamdi A A, et al. TiO2 nanosheets with exposed {001} facets for photocatalytic applications[J]. Nano Research, 2016, 9(1):3-27.
    Zhang Boa, Halidan Maimaitia, Zhang De-Donga, et al. Preparation of coal-based C-Dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 345:54-62.
    Zhang J, Liu Q, He H, et al. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B[J]. Carbon, 2019, 152:284-294.
    Li F, Li N, Xue C, et al. A Cu2O-CDs-Cu three component catalyst for boosting oxidase-like activity with hot electrons[J]. Chemical Engineering Journal, 2020, 382:122484-122492.
    Seo Y, Yeo B E, Cho Y S, et al. Photo-enhanced antibacterial activity of Ag3PO4[J]. Materials Letters, 2017, 197:146-149.
    Shi W, Wang Q, Long Y, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection[J]. Chemical Communications, 2011, 47(23):6695-6697.
    Zhang J, Liu J. Light-activated nanozymes:Catalytic mechanisms and applications[J]. Nanoscale, 2020, 12(5):2914-2923.
    K. Wu, J. Chen, J. R. McBride, et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J]. Science, 349(6248):632-635.
    Boerigter C, Aslam U, Linic S. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials[J]. ACS Nano, 2016, 10(6):6108-6115.
    Li H, Liu R, Liu Y, et al. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior[J]. Journal of Materials Chemistry, 2012, 22(34):17470-17475.
    Li F, Chang Q, Li N, et al. Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity[J]. Chemical Engineering Journal, 2020, 394:
    Zhang Z, Zhang J, Chen N, et al. Graphene quantum dots:an emerging material for energy-related applications and beyond[J]. Energy & Environmental Science, 2012, 5(10):8869-8890.
    Zhang S, Zhu J, Qing Y, et al. Construction of hierarchical porous carbon nanosheets from template-assisted assembly of coal-based graphene quantum dots for high performance supercapacitor electrodes[J]. Materials Today Energy, 2017, 6:36-45.
    Hou Q, Xue C, Li N, et al. Self-assembly carbon dots for powerful solar water evaporation[J]. Carbon, 2019, 149:556-563.
    Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets[J]. Nano Energy, 2017, 41:269-284.
    Qi W, Liu W, Zhang B, et al. Oxidative dehydrogenation on nanocarbon:identification and quantification of active sites by chemical titration[J]. Angewandte Chemie International Edition, 2013, 52(52):14224-14228.
    Zhu Y, Wang S, Ma R, et al. Enhanced efficiency and stability of inverted perovskite solar cells by carbon dots cathode interlayer via solution process[J]. Organic Electronics, 2019, 74:228-236.
    KlrblylkÇ, Toprak A, Ba?lak C, et al. Nitrogen-doped CQDs to enhance the power conversion efficiency of perovskite solar cells via surface passivation[J]. Journal of Alloys and Compounds, 2020, 832:154897-154905.
    Xie F, Xu Z, Jensen A C S, et al. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency[J]. Journal of Materials Chemistry A, 2019, 7(48):27567-27575.
    Li H, Huang J, Liu Y, et al. Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots[J]. Nano Research, 2019, 12(7):1585-1593.
  • 加载中
图(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  80
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-09-30
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回