留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学气相沉积法制备纳米炭纤维块体

葛翔 吴晓龙 王际童 龙东辉 乔文明 凌立成

葛翔, 吴晓龙, 王际童, 龙东辉, 乔文明, 凌立成. 化学气相沉积法制备纳米炭纤维块体. 新型炭材料, 2015, 30(1): 54-62.
引用本文: 葛翔, 吴晓龙, 王际童, 龙东辉, 乔文明, 凌立成. 化学气相沉积法制备纳米炭纤维块体. 新型炭材料, 2015, 30(1): 54-62.
GE Xiang, WU Xiao-long, WANG Ji-tong, LONG Dong-hui, QIAO Wen-ming, LING Li-cheng. Synthesis of carbon nanofiber monoliths by chemical vapor deposition. New Carbon Mater., 2015, 30(1): 54-62.
Citation: GE Xiang, WU Xiao-long, WANG Ji-tong, LONG Dong-hui, QIAO Wen-ming, LING Li-cheng. Synthesis of carbon nanofiber monoliths by chemical vapor deposition. New Carbon Mater., 2015, 30(1): 54-62.

化学气相沉积法制备纳米炭纤维块体

基金项目: 国家自然科学基金(20977028,51172071,51272077);国家重点基础研究发展规划(973)(2014CB239702);中央高校基本科研业务费专项基金; 上海市优秀技术带头人计划(B类,13XD1424900).
详细信息
    作者简介:

    葛翔,博士研究生.E-mail:gexiang19870111@126.com

    通讯作者:

    乔文明,教授.E-mail:qiaowm@ecust.edu.cn

  • 中图分类号: TQ127.1+1

Synthesis of carbon nanofiber monoliths by chemical vapor deposition

Funds: National Natural Science Foundation of China (20977028,51172071,51272077); National Key Basic Research Program of China (2014CB239702); Fundamental Research Founds for the Central University; Program of Shanghai Subject Chief Scientist (B type, 13XD1424900).
  • 摘要: 以乙烯为碳源、无负载型铜镍(Cu-Ni)合金为催化剂,采用催化化学气相沉积法(CVD),制备出性能优异的纳米炭纤维(CNF)块体,并考察制备条件对CNF块体的形貌、机械性能及比表面积的影响。结果表明,CNF块体的成形主要依赖于催化剂Cu-Ni的组成、生长温度及生长时间等因素。当Cu-Ni质量比为2:8、生长温度为580℃时,经3h制备的CNF块体,其密度、压缩弹性模量、比表面积分别达到0.28g/cm3、1.7KPa和117m2/g。CNF生长初始阶段的形貌观察表明,章鱼状粗纤维和细纤维交织成的三维网络结构是块体成形的主要原因。
  • Lee M K V D, Dillen A J V, Geus J W, et al. Catalytic growth of macroscopic carbon nanofiber bodies with high bulk density and high mechanical strength
    [J]. Carbon, 2006, 44: 629-637.
    Pham-Huu C, Keller N, Charbonniere L J, et al. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds
    [J]. Chem Commun, 2000, 1871-1872.
    鲍 英, 詹 亮, 王春晓, 等. 用作气相催化反应体系CNF/泡沫炭催化剂载体的合成
    [J]. 新型炭材料, 2011, 26(5): 341-346. (BAO Ying, ZHAN Liang, WANG Chun-xiao, et al. Synthesis of carbon nanofiber/carbon-foam composite for catalyst support in gas-phase catalytic reactions
    [J]. New Carbon Materials, 2011, 26(5): 341-346.)
    Jang B O, Park S H, Lee W J. Electrospun Co-Sn alloy/carbon nanofibers composite anode for lithium ion batteries
    [J]. J Alloys Compd, 2013, 574: 325-330.
    郑俊生, 王喜照, 符 蓉, 等. 炭纸上原位生长CNF/CP复合体的氧气电催化反应性能
    [J].新型炭材料,2011, 26(4): 262-270. (ZHENG Jun-sheng, WANG Xi-zhao, FU Rong, et al. Electrocatalytic oxygen-reduction reaction on a carbon nanofiber/carbon paper composite
    [J]. New Carbon Materials, 2011, 26(4): 262-270.)
    Morales G, Barrena M I, Rodríguez D, et al. Conductive CNF-reinforced hybrid composites by injection moulding
    [J]. Compos Struct, 2010, 92: 1416-1422.
    Hirota K, Hara H, Kato M. Mechanical properties of simultaneously synthesized and consolidated carbon nanofiber (CNF) dispersed SiC composites by pulsed electric-current pressure sintering
    [J]. Mater Sci Eng A, 2007, 458: 216-225.
    Lou F L, Sui Z J, Sun J T, et al. Synthesis of carbon nanofibers/mica hybrids for antistatic coatings
    [J]. Mater Lett, 2010, 64: 711-714.
    Li Y D, Chen J L, Chang L, et al. The doping effect of copper on the catalytic growth of carbon fibers from methane over a Ni/Al2O3 catalyst prepared from feitknecht compound precursor
    [J]. J Catal, 1998, 178: 76-83.
    Zhou J H, Sui Z J, Li P, et al. Structural characterization of carbon nanofibers formed from different carbon-containing gases
    [J]. Carbon, 2006, 44(15): 3255-3262.
    McCaldin S, Bououdina M, Grant D M, et al. The effect of processing conditions on carbon nanostructures formed on aniron-based catalyst
    [J]. Carbon, 2006, 44(11): 2273-2280.
    Yu Z, Chen D, Totdal B, et al. Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition
    [J]. J Phys Chem B, 2005, 109(13): 6096-6102.
    Rodriguez N M, Chambers A, Baker R T K. Catalytic engineering of carbon nanostructures
    [J]. Langmuir, 1995, 11: 3862-3866.
    赵铁均. 纳米炭纤维的微结构控制和调变及相关催化性能研究
    [D]. 华东理工大学, 2004. (Zhao Tie-jun. Manipulating and tuning the microstructure of carbon nannofiber as catalyst or support
    [D]. East China University of Science and Technology, 2004.)
    Soundararajan D, Park J H, Kimb K H, et al. Pt-Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells
    [J]. Curr Appl Phys, 2012, 12: 854-859.
    Toebes M L, Zhang Y, Hajek J, et al. Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis
    [J]. J Catal, 2004, 226: 215-225.
    Jarrah N, Van Ommen J G, Lefferts L. Development of monolith with a carbon-nanofiber-washcoat as a structured catalyst support in liquid phase
    [J]. Catal Today, 2003, 79: 29-33.
    Vieira R, Bastos-Netto D, Ledoux M J, et al. Hydrazine decomposition over iridium supported on carbon nanofibers composite for space applications: near actual flight conditions tests
    [J]. Appl Catal A, 2005, 279: 35-40.
    Zhou Q, Li P, Wang X L, et al. Preparation of CNF-supported Pt catalysts for hydrogen evolution from decalin
    [J]. Mater Chem Phys, 2011, 126: 41-45.
    Toebes M L, Zhang Y H, HájekSupport J, et al. Effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis
    [J]. J Catal, 2004, 226: 215-225.
    Gil S, Munoz L, Sánchez-Silva L, et al. Synthesis and characterization of Au supported on carbonaceous material-based catalysts for the selective oxidation of glycerol
    [J]. Chem Eng J, 2011, 172: 418-429.
    Duan X Z, Zhou J H, Qian G, et al. Carbon nanofiber-supported Ru catalysts for hydrogen evolution by ammonia decomposition
    [J]. Chin J Catal, 2010, 31: 979-986.
    Duan X Z, Qian G, Zhou X G, et al. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition
    [J]. Appl Catal B, 2011, 101: 189-196.
    Pang WW, Lim SY, Zhang YZ, et al. The bimetallic effects of catalysts on the syntheses of thin carbon nanofibers
    [J]. Journal of Physical Chemistry C, 2008, 112(27): 10050-10060
    Gong Q M, Li Z, Bai X D, et al. Thermal properties of aligned carbon nanotube/carbon nanocomposites
    [J]. Mater Sci Eng A , 2004, 384: 209-214.
    Ledoux M J, Pham-Huu C. Carbon nanostructures with macroscopic shaping for catalytic applications
    [J]. Catal Today, 2005, 102-103: 2-14.
    Jarrah N, Ommen J G V, Lefferts L. Development of monolith with a carbon-nanofiber-washcoat as a structured catalyst support in liquid phase
    [J]. Catal Today, 2003, (79-80): 29-33.
    Reshetenko T V, Avdeeva L B, Ismagilov Z R, et al. Catalytic filamentous carbon-structural and textural properties
    [J]. Carbon, 2003, 41: 1605-1615.
    Vieira R, Ledoux M J, Pham-Huu C. Synthesis and characterisation of carbon nanofibres with macroscopic shaping formed by catalytic decomposition of C2H6/H2 over nickel catalyst
    [J]. Appl Catal A, 2004, 274: 1-8.
    Best R J, Russell W W. Nickel, copper, and some of their alloys as catalysts for ethylene hydrogenation
    [J]. J Am Chem Soc, 1954, 76: 838-842.
    Tanaka A, Yoon S H, Mochida I. Formation of fine Fe-Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers
    [J]. Carbon, 2004, 42: 1291-1298.
    李凤仪, 张荣斌, 李海龙, 等. 载体对非晶态NiB合金催化性能影响的比较
    [J]. 燃料化学学报, 2001, 29(z1): 215-217. (LI Feng-yi, ZHANG Rong-Bin, LI Hai-long, et al. Study on catalytic activities over various supported amorphous NiB alloys
    [J]. J Fuel Chem Techn, 2001, 29(z1): 215-217.)
    Pham-Huu C, Keller N, Roddatis V V, et al. Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes
    [J]. Phys Chem Chem Phys, 2002, 4: 514-521.
    Pham-Huu C, Vieira R, Louis B, et al. About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst
    [J]. J Catal, 2006, 240: 194-202.
    Ji J, Duan X Z, Qian G, et al. Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition
    [J]. Catal Today, 2013, 216: 254-260.
  • 加载中
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  69
  • PDF下载量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-10
  • 录用日期:  2015-02-13
  • 修回日期:  2015-02-03
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回