留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应烧结制备碳化硅增强石墨复合材料及其性能

韩永军 李青彬 燕青芝 唐睿

韩永军, 李青彬, 燕青芝, 唐睿. 反应烧结制备碳化硅增强石墨复合材料及其性能[J]. 新型炭材料, 2015, 30(1): 92-96.
引用本文: 韩永军, 李青彬, 燕青芝, 唐睿. 反应烧结制备碳化硅增强石墨复合材料及其性能[J]. 新型炭材料, 2015, 30(1): 92-96.
HAN Yong-jun, LI Qing-bin, YAN Qing-zhi, TANG Rui. Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method[J]. NEW CARBON MATERIALS, 2015, 30(1): 92-96.
Citation: HAN Yong-jun, LI Qing-bin, YAN Qing-zhi, TANG Rui. Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method[J]. NEW CARBON MATERIALS, 2015, 30(1): 92-96.

反应烧结制备碳化硅增强石墨复合材料及其性能

基金项目: 国家自然科学基金(U1134102).
详细信息
    作者简介:

    韩永军.E-mail:hyj73@126.com

    通讯作者:

    燕青芝,博士,教授.E-mail:qzyan@ustb.edu.cn

  • 中图分类号: TB332

Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method

Funds: National Natural Science Foundation of China (U1134102).
  • 摘要: 以鳞片石墨和硅粉为混合原料,采用真空热压烧结工艺制备碳化硅增强石墨基复合材料。考察原料中硅粉含量对复合材料性能和结构的影响。XRD与SEM分析表明,经1900℃热压烧结后,硅粉与石墨发生原位反应生成碳化硅强化相,形成的碳化硅均匀分散在石墨片层间。随着硅质量分数从28.06%提高到37.94%,复合材料的弯曲强度从112MPa提高至206MPa。此外,当硅含量低于31.46%时,复合材料的摩擦系数恒定为0.1,与纯石墨的摩擦系数相当。
  • Tricot G, Nicolaus N, Diss P, et al. Inhibition of the catalytic oxidation of carbon/carbon composite materials by an aluminophosphate coating
    [J]. Carbon, 2012, 50(10): 3440-3445.
    Zhang Y H, Xiao Z C, Wang J P, et al. Effect of pyrocarbon content on thermal and frictional properties in C/C preforms of C/C-SiCcomposites
    [J]. Wear, 2010, 269(1): 132-138.
    Siegrist M E, Amstad E D, Lffler J F. Tribological properties of graphite-and ZrC-reinforced bulk metallic glass composites
    [J]. Intermetallics, 2007, 15(9): 1228-1236.
    Dienwiebel M, Verhoeven G S, Pradeep N, et al. Superlubricity of graphite
    [J]. Physical Review Letters, 2004, 92(12): 126101.
    蒋建纯, 黄伯云, 熊 翔. 炭/炭复合航空刹车材料的结构完整性对摩擦系数的影响
    [J]. 新型炭材料, 2003, 18(2): 111-116. (JIAN Jian-chun, HUANG Bo-yang, XIONG Xiang. Effect of structure intergrality of aircraft braking C/C composites on their friction coefficients
    [J]. New Carbon Materials, 2003, 18(2): 111-116.)
    宋永忠, 邱海鹏, 郭全贵, 等. 粘结剂含量对石墨材料电、热传导性能的影响
    [J]. 新型炭材料, 2002, 17(2): 56-60. (SONG Yong-zhong, QIU Hai-peng, GUO Quan-gui, et al. Effect of the binder content on the electrical and thermal conductivity of bulk graphite
    [J]. New Carbon Materials, 2002, 17(2): 56-60.)
    Xia H, Wang J, Shi Z, et al. Reciprocating friction and wear properties of mesocarbonmicrobeads-based graphite and siliconized graphite
    [J]. Journal of Nuclear Materials, 2013, 433(1): 341-344.
    Krasilnikov A Y, Krasilnikov A A. Magnetic clutches and magnetic systems in sealed machines
    [J]. Chemical and Petroleum Engineering, 2012, 48(5): 306-310.
    Yoshio M, Wang H, Fukuda K, et al. Carbon-coated Si as a lithium-ion battery anode material
    [J]. Journal of the Electrochemical Society, 2002, 149(12): A1598-A1603.
    Xie J, Cao G S, Zhao X B. Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells
    [J]. Materials Chemistry and Physics, 2004, 88(2): 295-299.
    Buqa H, Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries
    [J]. Journal of the Electrochemical Society, 2005, 152(2): A474-A481.
    Alias M, Crosnier O, Sandu I, et al. Silicon/graphite nanocomposite electrodes prepared by low pressure chemical vapor deposition
    [J]. Journal of Power Sources, 2007, 174(2): 900-904.
    冉丽萍, 易茂中, 蒋建献, 等. 炭/炭复合材料 MoSi2/SiC高温抗氧化复合涂层的制备及其结构
    [J]. 新型炭材料, 2006, 21(3): 231-236. (RAN Li-ping, YI Mao-zhong, JIANG Jian-xian, et al. MoSi2/SiC high temperature anti-oxidation compound coating on carbon/carbon composites and its anti-oxidation behavior
    [J]. New Carbon Materials, 2006, 21(3): 231-236.)
    Boecker W D, Hailey L N. Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
    [P]. U.S. Patent 4,525, 461. 1985-6-25.
    Safi S, Kazemzadeh A. MCMB-SiC composites; new class high-temperature structural materials for aerospace applications
    [J]. Ceramics International, 2013, 39(1): 81-86.
    王艳香, 谭寿洪, 江东亮. 反应烧结碳化硅的研究与进展
    [J]. 无机材料学报, 2004, 19(3): 456-462. (Wang Yan-xiang, TanShou-hong, Jiang Dong-liang. Research and development of reaction sintered silicon carbide
    [J]. Journal of Inorganic Materials, 2004, 19(3): 456-462.)
    Zhu C, Lang J, Ma N. Preparation of Si-diamond-SiC composites by in-situ reactive sintering and their thermal properties
    [J]. Ceramics International, 2012, 38(8): 6131-6136.
    Samoilov V M, Porodzinskiy I A. Preparation and investigation of silicon carbide materials on the basis of reaction-bonded silicon carbide
    [J]. Inorganic Materials: Applied Research, 2014, 5(5): 540-544.
    刘桂香. 炭/炭复合材料的抗氧化研究
    [J]. 炭素, 2004, (2): 24-26. (Liu Gui Xiang. Study on the anti-oxidation of carbon/carbon composite
    [J].Carbon(Chinese), 2004, (2): 24-26.)
    Yang X, Huang Q, Su Z, et al. Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction
    [J]. Corrosion Science, 2013, 75: 16-27.
  • 加载中
计量
  • 文章访问数:  773
  • HTML全文浏览量:  35
  • PDF下载量:  1150
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-10
  • 录用日期:  2015-02-13
  • 修回日期:  2015-01-22
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回