留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/炭黑杂化材料:新型、高效锂离子电池二元导电剂

李用 吕小慧 苏方远 贺艳兵 李宝华 杨全红 康飞宇

李用, 吕小慧, 苏方远, 贺艳兵, 李宝华, 杨全红, 康飞宇. 石墨烯/炭黑杂化材料:新型、高效锂离子电池二元导电剂[J]. 新型炭材料, 2015, 30(2): 128-132.
引用本文: 李用, 吕小慧, 苏方远, 贺艳兵, 李宝华, 杨全红, 康飞宇. 石墨烯/炭黑杂化材料:新型、高效锂离子电池二元导电剂[J]. 新型炭材料, 2015, 30(2): 128-132.
LI Yong, LU Xiao-hui, SU Fang-yuan, HE Yan-bing, LI Bao-hua, YANG Quan-hong, KANG Fei-yu. A graphene/carbon black hybrid material: a novel binary conductive additive for lithium-ion batteries[J]. NEW CARBOM MATERIALS, 2015, 30(2): 128-132.
Citation: LI Yong, LU Xiao-hui, SU Fang-yuan, HE Yan-bing, LI Bao-hua, YANG Quan-hong, KANG Fei-yu. A graphene/carbon black hybrid material: a novel binary conductive additive for lithium-ion batteries[J]. NEW CARBOM MATERIALS, 2015, 30(2): 128-132.

石墨烯/炭黑杂化材料:新型、高效锂离子电池二元导电剂

基金项目: 深圳基础研究项目(JC201104210152A, ZDSYS20140509172959981, JCYJ20130402145002430);博士后科学基金面上项目(2012M520267).
详细信息
    通讯作者:

    苏方远,博士,助理研究员. E-mail: su.fangyuan@sz.tsinghua.edu.cn

  • 中图分类号: TB332

A graphene/carbon black hybrid material: a novel binary conductive additive for lithium-ion batteries

Funds: Shenzhen Basic Research Projects (JC201104210152A, ZDSYS20140509172959981, JCYJ20130402145002430); Chinese Postdoctoral Science Foundation (2012M520267).
  • 摘要: 采用CTAB为表面活性剂将氧化石墨烯和炭黑均匀分散,经水热过程将二者组装到一起,进而高温热处理得到石墨烯/炭黑杂化材料。该材料是一种具有独特结构和良好性能的石墨烯/炭黑杂化材料作为锂离子电池二元导电剂。炭黑颗粒均匀分布在石墨烯表面,可防止石墨烯片层团聚并进一步提高电子导电效率。由于炭黑可增加对电解液的吸附,促进电极内部锂离子的传输过程,最终提高锂离子电池的倍率性能。结果表明,使用质量分数5% 900 ℃热处理之后的二元导电剂的LiFePO4,在10 C时比容量为73 mAh/g,优于使用10%炭黑导电剂时的LiFePO4 (10 C比容量为62 mAh/g)。按照整个电极质量计算,前者的比容量性能比后者提高了近25%,同时在循环性能方面,前者的稳定性也优于后者。
  • [1] Pumera M. Electrochemistry of graphene, graphene oxide and other graphenoids: Review
    [J]. Electrochemistry Communications, 2013, 36: 14-18.
    [2] Su F Y, You C, He Y B, et al. Flexible and planar graphene conductive additives for lithium-ion batteries
    [J]. Journal of Materials Chemistry, 2010, 20(43): 9644-9650.
    [3] Dominko R, Gaberscek M, Drofenik J, et al. The role of carbon black distribution in cathodes for Li ion batteries
    [J]. Journal of Power Sources, 2003, 119-121: 770-773.
    [4] Ak Geim K N. The rise of graphene
    [J]. Nature Materials, 2007, 6: 183-191.
    [5] Tan Y B, Lee J M. Graphene for supercapacitor applications
    [J]. Journal of Materials Chemistry A, 2013, 1(47): 14814-14843.
    [6] Venkateswara Rao C, Leela Mohana Reddy A, Ishikawa Y, et al. LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries
    [J]. ACS Applied Materials & Interfaces, 2011, 3(8): 2966-2972.
    [7] Chang H, Wu H. Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications
    [J]. Energy & Environmental Science, 2013, 6(12): 3483.
    [8] Su F-Y, He Y-B, Li B, et al. Could graphene construct an effective conducting network in a high-power lithium ion battery
    [J]. Nano Energy, 2012, 1(3): 429-439.
    [9] Zhang B, Yu Y, Liu Y, et al. Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries
    [J]. Nanoscale, 2013, 5(5): 2100-2106.
    [10] Jiang R, Cui C, Ma H. Using graphene nanosheets as a conductive additive to enhance the capacitive performance of alpha-MnO2
    [J]. Electrochimica Acta, 2013, 104: 198-207.
    [11] Lv W, Tang D M, He Y B, et al. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage
    [J]. ACS Nano, 2009, 3(11): 3730-3736.
    [12] Wang Q, Yan J, Fan Z, et al. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors
    [J]. Journal of Power Sources, 2014, 247: 197-203.
    [13] Zhao B, Liu P, Jiang Y, et al. Supercapacitor performances of thermally reduced graphene oxide
    [J]. Journal of Power Sources, 2012, 198: 423-427.
    [14] Xu J, Gai S, He F, et al. A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance
    [J]. Journal of Materials Chemistry A, 2014, 2(4): 1022-1031.
    [15] Giri S, Ghosh D, Das C K. In situ synthesis of cobalt doped polyaniline modified graphene composites for high performance supercapacitor electrode materials
    [J]. Journal of Electroanalytical Chemistry, 2013, 697: 32-45.
    [16] Varzi A, Taeubert C, Wohlfahrt-Mehrens M, et al. Study of multi-walled carbon nanotubes for lithium-ion battery electrodes
    [J]. Journal of Power Sources, 2011, 196(6): 3303-3309.
  • 加载中
计量
  • 文章访问数:  565
  • HTML全文浏览量:  0
  • PDF下载量:  1558
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 录用日期:  2015-05-04
  • 修回日期:  2015-04-03
  • 刊出日期:  2015-04-28

目录

    /

    返回文章
    返回