留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维纳米材料的自上而下制备:可控液相剥离

邵姣婧 郑德一 李政杰 杨全红

邵姣婧, 郑德一, 李政杰, 杨全红. 二维纳米材料的自上而下制备:可控液相剥离[J]. 新型炭材料, 2016, 31(2): 97-114.
引用本文: 邵姣婧, 郑德一, 李政杰, 杨全红. 二维纳米材料的自上而下制备:可控液相剥离[J]. 新型炭材料, 2016, 31(2): 97-114.
SHAO Jiao-jing, ZHENG De-yi, LI Zheng-jie, YANG Quan-hong. Top-down fabrication of two-dimensional nanomaterials:Controllable liquid phase exfoliation[J]. NEW CARBON MATERIALS, 2016, 31(2): 97-114.
Citation: SHAO Jiao-jing, ZHENG De-yi, LI Zheng-jie, YANG Quan-hong. Top-down fabrication of two-dimensional nanomaterials:Controllable liquid phase exfoliation[J]. NEW CARBON MATERIALS, 2016, 31(2): 97-114.

二维纳米材料的自上而下制备:可控液相剥离

基金项目: 国家自然科学基金(51502046,21564002);贵州省科学技术基金(黔科合JZ字[2015]2004号);贵州省科技计划项目(黔科合LH字[2014]7602);贵州省留学人员科技创新项目(黔人项目资助合同[2015]11号);贵州大学引进人才科研项目(贵大人基合字[2014]45号).
详细信息
    通讯作者:

    邵姣婧,博士,教授.E-mail:shaojiao_jing@163.com

  • 中图分类号: TQ127.1+1

Top-down fabrication of two-dimensional nanomaterials:Controllable liquid phase exfoliation

Funds: National Natural Science Foundation of China(51502046, 21564002); Natural Science Foundation of Guizhou Province(JZ[2015]2004); Joint Capital Project of Science and Technology Department of Guizhou Province(LH[2014]7602); Science and Technology Innovation Project for Selected Overseas Chinese Scholar at Guizhou Province([2015]11); Talent Introduction and Scientific Research Project of Guizhou University, China([2014]45).
  • 摘要: 二维纳米材料独特的结构特征赋予了其众多的优异性质,充分利用这些特性有利于实现新材料的制备和新产品的开发,而二维纳米材料的规模化可控制备是实现其广泛应用的必要前提。在众多制备二维纳米材料的各类方法中,基于层状前驱体的液相剥离法以其较高的效率和良好的操控性等优点受到了广泛关注。本文详细阐述了二维纳米材料的优异特性及其潜在应用,并以目前研究最为广泛的几种二维纳米材料为例,重点介绍了几种常见的基于三维层状晶体的液相剥离以制备二维纳米材料的方法,最后对各种液相剥离法的适用性进行总结,并对二维纳米材料的发展前景进行展望。
  • Huang J X, Goldberger J E. Two-dimensional materials[J]. J Solid State Chem, 2015, 224:1.
    Wu T, Zhang H. Piezoelectricity in two-dimensional materials[J]. Angew Chem Int Edit, 2015, 54(15):4432-4434.
    Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217):1246501-1-1246501-9.
    Dubertret B, Heine T, Terrones M. The rise of two-dimensional materials[J]. Accounts of Chemical Research, 2015, 48(1):1-2.
    Chalasani R, Gupta A, Vasudevan S. Engineering new layered solids from exfoliated inorganics:A periodically alternating hydrotalcite-montmorillonite layered hybrid[J]. Sci Rep, 2013, 3(12):3498(1-8).
    Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 2013, 7(4):2898-2926.
    Geng F, Ma R, Nakamura A, et al. Unusually stable~100-fold reversible and instantaneous swelling of inorganic layered materials[J]. Nat Commun, 2013, 4:1632(1-7).
    Geim A K, Grigorieva I V. Van der waals heterostructures[J]. Nature, 2013, 499(7459):419-425.
    Song F, Hu X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nat Commun, 2014, 5:4477(1-9).
    Yu Y, Li C, Liu Y, et al. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films[J]. Sci Rep, 2013, 3(5):1866(1-6).
    Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nat Nanotechnol, 2009, 4(1):30-33.
    Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37):4248-4253.
    Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proc Natl Acad Sci U S A, 2005, 102(30):10451-10453.
    Shao J J, Lv W, Yang Q H. Self-assembly of graphene oxide at interfaces[J]. Adv Mater, 2014, 26(32):5586-5612.
    Xu Z, Sun H, Zhao X, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Adv Mater, 2013, 25(2):188-193.
    Shao J J, Raidongia K, Koltonow A R, et al. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability[J]. Nat Commum, 2015, 6:7602(1-7).
    Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nat Commum, 2011, 2:571(1-9).
    Naguib M, Come J, Dyatkin B, et al. Mxene:A promising transition metal carbide anode for lithium-ion batteries[J]. Electrochem Commun, 2012, 16(1):61-64.
    Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3):183-191.
    Wallace P R. The band theory of graphite[J]. Phys Rev, 1947, 71(9):622-634.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Zhao X, Zhang Q H, Chen D J, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5):2357-2363.
    Song P, Cao Z, Cai Y, et al. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties[J]. Polymer, 2011, 52(18):4001-4010.
    Vadukumpully S, Paul J, Mahanta N, et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability[J]. Carbon, 2011, 49(1):198-205.
    Walker L S, Marotto V R, Rafiee M A, et al. Toughening in graphene ceramic composites[J]. ACS Nano, 2011, 5(4):3182-3190.
    Tao Y, Xie X, Lv W, et al. Towards ultrahigh volumetric capacitance:Graphene derived highly dense but porous carbons for supercapacitors[J]. Sci Rep, 2013, 3(7471):2975(1-8).
    Shao J J, Wu S D, Zhang S B, et al. Graphene oxide hydrogel at solid/liquid interface[J]. Chem Commun, 2011, 47(20):5771-5773.
    Chanana A, Mahapatra S. First principles study of metal contacts to monolayer black phosphorous[J]. J Appl Phys, 2014, 116(20):204302-1-204302-9.
    Gehring P, Urcuyo R, Duong D L, et al. Thin-layer black phosphorus/GaAs heterojunction p-n diodes[J]. Appl Phys Lett, 2015, 106(23):233110-1-233110-5.
    Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Phys Rev B, 2014, 89(23):235319-1-235319-6.
    Dolui K, Quek S Y. Quantum-confinement and structural anisotropy result in electrically-tunable dirac cone in few-layer black phosphorous[J]. Sci Rep, 2015, 5:11699(1-11).
    Bridgman P W. Two new modifications of phosphorus[J]. J Am Chem Soc, 1914, 36(7):1344-1363.
    Sun Y, Gao S, Lei F, et al. Ultrathin two-dimensional inorganic materials:New opportunities for solid state nanochemistry[J]. Accounts Chem Res, 2015, 48(1):3-12.
    Liu X, Xu T, Wu X, et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets[J]. Nat Commun, 2013, 4:1776(1-6).
    Frey G L, Reynolds K J, Friend R H. Novel electrodes from solution-processed layer-structure materials[J]. Adv Mater, 2002, 14(4):265-268.
    Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5):3766-3798.
    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3):147-150.
    Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2[J]. ACS Nano, 2011, 5(12):9934-9938.
    Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett, 2011, 11(12):5111-5116.
    Lv R, Robinson J A, Schaak R E, et al. Transition metal dichalcogenides and beyond:Synthesis, properties, and applications of single-and few-layer nanosheets[J]. Accounts Chem Res, 2015, 48(1):56-64.
    Bruix A, Fuchtbauer H G, Tuxen A K, et al. In situ detection of active edge sites in single-layer MoS2 catalysts[J]. ACS Nano, 2015, 9(9):9322-9330.
    Smith A J, Chang Y H, Raidongia K, et al. Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production[J]. Adv Energy Mater, 2014, 4(14):1400398(1-6).
    Zhang Y, Zheng B, Zhu C F, et al. Single-layer transition metal dichalcogenide nanosheetbased nanosensors for rapid, sensitive, and multiplexed detection of DNA[J]. Adv Mater, 2015, 27(5):935-939.
    Mao K, Wu Z T, Chen Y R, et al. A novel biosensor based on single-layer MoS2 nanosheets for detection of Ag+[J]. Talanta, 2015, 132:658-663.
    Varghese J O, Agbo P, Sutherland A M, et al. The influence of water on the optical properties of single-layer molybdenum disulfide[J]. Adv Mater, 2015, 27(17):2734-2740.
    Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article:Mxenes:A new family of two-dimensional materials[J]. Adv Mater, 2014, 26(7):992-1005.
    Tang Q, Zhou Z, Shen P. Are mxenes promising anode materials for Li-ion batteries? Computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2(x=f, oh) monolayer[J]. J Am Chem Soc, 2012, 134(40):16909-16916.
    Xie X, Chen S, Ding W, et al. An extraordinarily stable catalyst:Pt nps supported on two-dimensional Ti3C2X2(x=oh, f) nanosheets for oxygen reduction reaction[J]. Chem Commun, 2013, 49(86):10112-10114.
    Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153):1502-1505.
    Come J, Naguib M, Rozier P, et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode[J]. J Electrochem Soc, 2012, 159(8):A1368-A1373.
    DeMumbrum L E. Montmorillonite-vermiculite interstratification in clays from eocene chalk soils[J]. Science, 1963, 140(3563):187-188.
    WALKER G F. Distinction of vermiculite, chlorite and montmorillonite in clays[J]. Nature, 1949, 164:577-578.
    Jaramillo T F, Jφrgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834):100-102.
    Solin S A. Clays and clay intercalation compounds:Properties and physical phenomena[J]. Annu Rev Mater Sci, 1997, 27(1):89-115.
    Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide(LDH) nanosheets[J]. Chem Rev, 2012, 112(7):4124-4155.
    Liu Z, Ma R, Osada M, et al. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide:Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J]. J Am Chem Soc, 2006, 128(14):4872-4880.
    Ren W, Cheng H M. The global growth of graphene[J]. Nat Nanotechnol, 2014, 9(10):726-730.
    Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid Exfoliation of Layered Materials[J]. Science, 2013, 340(6139):1226419-1-1226419-18.
    Suquet H, de la Calle C, Pezerat H. Swelling and structural organization of saponite[J]. Clays Clay Miner, 1975, 23(1):1-9.
    Walker G F. Diffusion of exchangeable cations in vermiculite[J]. Nature, 1959, 184:1392-1393.
    Walker G F. Diffusion of interlayer water in vermiculite[J]. Nature, 1956, 177:239-240.
    Walker G F. Vermiculite-organic complexes[J]. Nature, 1950, 166:695-696.
    Walker G F, Garrett W G. Complexes of vermiculite with amino-acids[J]. Nature, 1961, 191(4796):1389.
    Walker G F. Macroscopic swelling of vermiculite crystals in water[J]. Nature, 1960, 187(4734):312-313.
    Adachi-Pagano M, Forano C, Besse J P. Delamination of layered double hydroxides by use of surfactants[J]. Chem Commun, 2000, 1:91-92.
    Yang D, Frindt R F. Li-intercalation and exfoliation of WS2[J]. J Phys Chem Solids, 1996, 57(6):1113-1116.
    Fan X, Xu P, Zhou D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion[J]. Nano Lett, 2015, 15(9):5956-5960.
    Zheng J, Zhang H, Dong S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nat Commun, 2014, 5:2995(1-7).
    Wang F, Yi J, Wang Y, et al. Graphite intercalation compounds(GICs):A new type of promising anode material for lithium-ion batteries[J]. Adv Energy Mater, 2014, 4:1300600(1-6).
    Dresselhaus M S. Intercalation in layered materials[J]. MRS Bulletin, 1987, 12(03):24-28.
    Abdelkader A M, Cooper A J, Dryfe R A W, et al. How to get between the sheets:A review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite[J]. Nanoscale, 2015, 7(16):6944-6956.
    Liu N, Luo F, Wu H, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite[J]. Adv Funct Mater, 2008, 18(10):1518-1525.
    Chen C W, Liu Z T, Zhang Y Z, et al. Sonoelectrochemical intercalation and exfoliation for the preparation of defective graphene sheets and their application as nonenzymatic H2O2 sensors and oxygen reduction catalysts[J]. RSC Adv, 2015, 5(28):21988-21998.
    Yoon G, Seo D H, Ku K, et al. Factors affecting the exfoliation of graphite intercalation compounds for graphene synthesis[J]. Chem Mater, 2015, 27(6):2067-2073.
    Vall, eacute, Carlos M, Hassan S, et al. Solutions of negatively charged graphene sheets and ribbons[J]. J Am Chem Soc, 2008, 130(47):15802-15804.
    Pei S, Cheng H M, The reduction of graphene oxide[J], Carbon, 2012, 50(9):3210-3228.
    Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors, Carbon, 2012, 50(10):3572-3584.
    Chao X, Yuan R S, Wang X, Selective reduction of graphene oxide, New Carbon Mater, 2014, 29(1):61-66.
    Shao J J, Li Z J, Zhang C, et al. A wavy graphene/platinum hybrid with increased electroactivity for the methanol oxidation reaction[J]. J Mater Chem A, 2014, 2(6):1940-1946.
    Sahoo M, Vinayan B P, Ramaprabhu S. Platinum-decorated chemically modified reduced graphene oxide-multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell[J]. RSC Adv, 2014, 4(50):26140-26148.
    Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Anal Chem, 2009, 81(14):5603-5613.
    Wan P, Yang W, Wang X N, et al. Reduced graphene oxide modified with hierarchical flower-like In(OH)3 for NO2 room-temperature sensing[J]. Sensors Actuat B-Chem, 2015, 214(31):36-42.
    Wang X X, Wang H, Ge T, et al. Chemically modified graphene and sulfonic acid-doped polyaniline nanofiber composites:Preparation routes, characterization, and comparison of direct DNA detection[J]. J Phys Chem C, 2015, 119(17):9076-9084.
    Kim J E, Han T H, Lee S H, et al. Graphene oxide liquid crystals[J]. Angew Chem Int Edit, 2011, 50(13):3043-3047.
    Xu Z, Gao C. Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4):2908-2915.
    Dan B, Behabtu N, Martinez A, et al. Liquid crystals of aqueous, giant graphene oxide flakes[J]. Soft Matter, 2011, 7(23):11154-11159.
    Shao J J, Lv W, Guo Q, et al. Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface[J]. Chem Commun, 2012, 48(31):3706-3708.
    Chen C, Yang Q H, Yang Y, et al. Self-assembled free-standing graphite oxide membrane[J]. Adv Mater, 2009, 21(29):3007-3011.
    Lv W, Xia Z, Wu S, et al. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface[J]. J Mater Chem, 2011, 21(10):3359-3364.
    Zhao M Q, Ren C E, Ling Z, et al. Flexible Mxene/carbon nanotube composite paper with high volumetric capacitance[J]. Adv Mater, 2015, 27(2):339-345.
    Halim J, Lukatskaya M R, Cook K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chem Mater, 2014, 26(7):2374-2381.
    Mashtalir O, Naguib M, Mochalin V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nat Commun, 2013, 4:1716(1-7).
    Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide‘clay’with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
    Naguib M, Unocic R R, Armstrong B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "Mxenes"[J]. Dalton Trans, 2015, 44(20):9353-9358.
    Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol, 2008, 3(9):563-568.
    Hamilton C E, Lomeda J R, Sun Z, et al. High-yield organic dispersions of unfunctionalized graphene[J]. Nano Lett, 2009, 9(10):3460-3462.
    Bourlinos A B, Georgakilas V, Zboril R, et al. Liquid-phase exfoliation of graphite towards solubilized graphenes[J]. Small, 2009, 5(16):1841-1845.
    Khan U, O'Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene[J]. Small, 2010, 6(7):864-871.
    Lotya M, King P J, Khan U, et al. High-concentration, surfactant-stabilized graphene dispersions[J]. ACS Nano, 2010, 4(6):3155-3162.
    Nguyen T P, Van Le Q, Choi K S, et al. MoS2 nanosheets exfoliated by sonication and their application in organic photovoltaic cells[J]. Sci Adv Mater, 2015, 7(4):700-705.
    Gupta A, Arunachalam V, Vasudevan S. Water dispersible, positively and negatively charged MoS2 nanosheets:Surface chemistry and the role of surfactant binding[J]. J Phys Chem Lett, 2015, 6(4):739-744.
    Han J T, Jang J I, Kim H, et al. Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation[J]. Sci Rep, 2014, 4:5133(1-7).
    Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nat Nanotechnol, 2009, 4(4):217-224.
    Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. J Am Chem Soc, 2009, 131(10):3611-3620.
    Tour J M. Layered materials:Scaling up exfoliation[J]. Nat Mater, 2014, 13(6):545-546.
    Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nat Mater, 2014, 13(6):624-630.
    Varrla E, Backes C, Paton K R, et al. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation[J]. Chem Mater, 2015, 27(3):1129-1139.
    Varrla E, Paton K R, Backes C, et al. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender[J]. Nanoscale, 2014, 6(20):11810-11819.
    Chen X, Dobson J F, Raston C L, Vortex fluidic exfoliation of graphite and boron nitride[J]. Chem Commun, 2012, 48(31):3703-3705.
  • 加载中
计量
  • 文章访问数:  749
  • HTML全文浏览量:  40
  • PDF下载量:  1981
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-25
  • 录用日期:  2016-04-21
  • 修回日期:  2016-03-28
  • 刊出日期:  2016-04-28

目录

    /

    返回文章
    返回