留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔掺磷碳纳米管:磷酸水热合成及其在氧还原和锂硫电池中的应用

郭梦清 黄佳琦 孔祥屹 彭翃杰 税晗 钱方圆 朱林 朱万诚 张强

郭梦清, 黄佳琦, 孔祥屹, 彭翃杰, 税晗, 钱方圆, 朱林, 朱万诚, 张强. 多孔掺磷碳纳米管:磷酸水热合成及其在氧还原和锂硫电池中的应用. 新型炭材料, 2016, 31(3): 352-362.
引用本文: 郭梦清, 黄佳琦, 孔祥屹, 彭翃杰, 税晗, 钱方圆, 朱林, 朱万诚, 张强. 多孔掺磷碳纳米管:磷酸水热合成及其在氧还原和锂硫电池中的应用. 新型炭材料, 2016, 31(3): 352-362.
GUO Meng-qing, HUANG Jia-qi, KONG Xiang-yi, PENG Hong-jie, SHUI Han, QIAN Fang-yuan, ZHU Lin, ZHU Wan-cheng, ZHANG Qiang. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Mater., 2016, 31(3): 352-362.
Citation: GUO Meng-qing, HUANG Jia-qi, KONG Xiang-yi, PENG Hong-jie, SHUI Han, QIAN Fang-yuan, ZHU Lin, ZHU Wan-cheng, ZHANG Qiang. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Mater., 2016, 31(3): 352-362.

多孔掺磷碳纳米管:磷酸水热合成及其在氧还原和锂硫电池中的应用

基金项目: 国家自然科学基金(21306103,21422604);国家重大科学研究计划(2015CB932500).
详细信息
    作者简介:

    郭梦清,博士生.E-mail:guo.761@osu.edu

    通讯作者:

    黄佳琦,博士,副研究员.E-mail:jqhuang@tsinghua.edu.cn;张强,博士,副教授.E-mail:zhang-qiang@mails.tsinghua.edu.cn

  • 中图分类号: TB332

Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries

Funds: National Natural Scientific Foundation of China (21306103, 21422604);National Basic Research Program of China (2015CB932500).
  • 摘要: 碳纳米管优异的物理性质和可调的化学组成使其拥有广泛的应用前景。采用低温过程在碳骨架中引入磷原子预期带来可调的化学特性。本研究采用170℃下水热处理碳纳米管-磷酸混合物获得磷掺杂的碳纳米管。磷掺杂的碳管的磷含量为1.66%,比表面积为132 m2/g,热失重峰在纯氧环境下提升至694℃。当掺磷碳纳米管用于氧还原反应时,其起始电位为-0.20 V,电子转移数为2.60,反应电流显著高于无掺杂的碳纳米管。当其用作锂硫电池正极导电材料时,电极的起始容量为1106 mAh/g,电流密度从0.1 C提升至1 C时容量保留率为80%,100次循环的衰减率为每圈0.25%。
  • Su D S, Zhang J, Frank B, et al. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3: 169-180.
    Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angew Chem Int Ed, 2011, 50: 3257-3261.
    Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J Am Chem Soc, 2012, 134: 16127-16130.
    Yang D S, Bhattacharjya D, Song M Y, et al. Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction[J]. Carbon, 2014, 67: 736-743.
    Tian G L, Zhao M, Yu D, et al. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction[J]. Small, 2014, 10: 2251-2259.
    Wang C, Sun L, Zhou Y, et al. P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors[J]. Carbon, 2013, 59: 537-546.
    Zhang C Z, Mahmood N, Yin H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Adv Mater, 2013, 25: 4932-4937.
    Song J X, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Adv Funct Mater, 2014, 24: 1243-1250.
    Song J, Shen W Z, Wang J G, et al. Superior carbon-based CO2 adsorbents prepared from poplar anthers[J]. Carbon, 2014, 69: 255-263.
    Strelko V V, Kuts V S, Thrower P A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions[J]. Carbon, 2000, 38: 1499-1503.
    Lee Y J, Radovic L R. Oxidation inhibition effects of phosphorus and boron in different carbon fabrics[J]. Carbon, 2003, 41: 1987-1997.
    Wu X X, Radovic L R. Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus[J]. Carbon, 2006, 44: 141-151.
    Some S, Kim J, Lee K, et al. Highly air-stable phosphorus-doped n-type graphene field-effect transistors[J]. Adv Mater, 2012, 24: 5481-5486.
    Li R, Wei Z D, Gou X L, et al. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts[J]. RSC Adv, 2013, 3: 9978-9984.
    Wu J, Yang Z R, Li X W, et al. Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction[J]. J Mater Chem A, 2013, 1: 9889-9896.
    Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano, 2012, 6: 7084-7091.
    Yu D S, Xue Y H, Dai L M. Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction[J]. J Phys Chem Lett, 2012, 3: 2863-2870.
    Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation[J]. Carbon, 1998, 36: 1085-1097.
    Puziy A M, Poddubnaya O I, Martinez-Alonso A, et al. Synthetic carbons activated with phosphoric acid Ⅱ. Porous structure[J]. Carbon, 2002, 40: 1507-1519.
    Kucukayan-Dogu G, Sen H S, Yurdakul H, et al. Synthesis of phosphorus included multiwalled carbon nanotubes by pyrolysis of sucrose[J]. J Phys Chem C, 2013, 117: 24554-24560.
    Zuo S L, Yang J X, Liu J L. Effects of the heating history of impregnated lignocellulosic material on pore development during phosphoric acid activation[J]. Carbon, 2010, 48: 3293-3295.
    Romero-Anaya A J, Lillo-Rodenas M A, de Lecea C S M, et al. Hydrothermal and conventional H3PO4 activation of two natural bio-fibers[J]. Carbon, 2012, 50: 3158-3169.
    Yue Z R, Economy J, Mangun C L. Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers[J]. Carbon, 2003, 41: 1809-1817.
    Zhao X C, Zhang Q, Zhang B, et al. Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance[J]. J Mater Chem, 2012, 22: 4963-4969.
    Fan X, Yu C, Ling Z, et al. Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance[J]. ACS Appl Mater Interfaces, 2013, 5: 2104-2110.
    Peng H J, Huang J Q, Zhao M Q, et al. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries[J]. Adv Funct Mater, 2014, 24: 2772-2781.
    Kim M J, Jean I Y, Seo J M, et al. Graphene phosphonic acid as an efficient flame retardant[J]. ACS Nano, 2014, 8: 2820-2825.
    Hayashi J, Kazehaya A, Muroyama K, et al. Preparation of activated carbon from lignin by chemical activation[J]. Carbon, 2000, 38: 1873-1878.
    Guo Y P, Rockstraw D A. Physical and chemical properties of carbons synthesized from xylan, cellulose, and kraft lignin by H3PO4 activation[J]. Carbon, 2006, 44: 1464-1475.
    Zhao L, Baccile N, Gross S, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives[J]. Carbon, 2010, 48: 3778-3787.
    Ramasahayam S K, Nasini U B, Bairi V, et al. Microwave assisted synthesis and characterization of silicon and phosphorous co-doped carbon as an electrocatalyst for oxygen reduction reaction[J]. RSC Adv, 2014, 4: 6306-6313.
    Jo G, Sanetuntikul J, Shanmugam S. Boron and phosphorous-doped graphene as a metal-free electrocatalyst for the oxygen reduction reaction in alkaline medium[J]. RSC Adv, 2015, 5: 53637-53643.
    Zhang Q, Cheng X B, Huang J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Mater, 2014, 29: 241-264.
    Xu F, Tang Z W, Huang S Q, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015, 6: 7221.
    Shi J L, Tang C, Peng H, et al. 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries[J]. Small, 2015, 11: 5243-5252.
    TANG Zhi-wei, XU Fei, LIANG Ye-ru, et al. Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel/sulfur cathode for lithium-sulfur batteries[J]. New Carbon Mater, 2015, 30: 319-326. (唐志伟, 徐 飞, 梁业如, 等. 层次孔活性炭气凝胶/硫复合正极材料的制备及其电化学性能[J]. 新型炭材料, 2015, 30: 319-326.
    Zhou G M, Yin L C, Wang D W, et al. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Nano, 2013, 7: 5367-5375.
    Gu X X, Tong C J, Lai C, et al. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries[J]. J Mater Chem A, 2015, 3: 16670-16678.
    Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Mater, 2016, 2: 76-106.
    Sun F G, Wang J T, Chen H C, et al. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries[J]. ACS Appl Mater Interfaces, 2013, 5: 5630-5638.
    Peng H J, Hou T, Zhang Q, et al. Strongly coupled interfaces between heterogeneous carbon host and sulfur-containing guest for highly-stable lithium-sulfur batteries: Mechanistic insight into capacity degradation[J]. Adv Mater Interfaces, 2014, 1: 1400227.
    Tang C, Zhang Q, Zhao M, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Adv Mater, 2014, 26: 6100-6105.
    Niu S Z, Lv W, Zhou G M, et al. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries[J]. Chem Commun, 2015, 51: 17720-17723.
    Zhou G M, Zhao Y B, Manthiram A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries[J]. Adv Energy Mater, 2015, 5: 1402263.
    Huang J Q, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Mater, 2015, 1: 127-145.
    Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. J Electrochem Soc, 2009, 156: A694-A702.
    Huang J Q, Zhang Q, Zhang S M, et al. Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode[J]. Carbon, 2013, 58: 99-106.
    Kim K H, Jun Y S, Gerbec J A, et al. Sulfur infiltrated mesoporous graphene-silica composite as a polysulfide retaining cathode material for lithium-sulfur batteries[J]. Carbon, 2014, 69: 543-551.
  • 加载中
图(1)
计量
  • 文章访问数:  1093
  • HTML全文浏览量:  200
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-09
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回