留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/聚合物复合材料的研究进展及其应用前景

曾尤 王函 成会明

曾尤, 王函, 成会明. 石墨烯/聚合物复合材料的研究进展及其应用前景[J]. 新型炭材料, 2016, 31(6): 555-567.
引用本文: 曾尤, 王函, 成会明. 石墨烯/聚合物复合材料的研究进展及其应用前景[J]. 新型炭材料, 2016, 31(6): 555-567.
ZENG You, WANG Han, CHENG Hui-ming. Research progress and potential applications for graphene/polymer composites[J]. NEW CARBOM MATERIALS, 2016, 31(6): 555-567.
Citation: ZENG You, WANG Han, CHENG Hui-ming. Research progress and potential applications for graphene/polymer composites[J]. NEW CARBOM MATERIALS, 2016, 31(6): 555-567.

石墨烯/聚合物复合材料的研究进展及其应用前景

基金项目: 国家自然科学基金委创新群体项目(51521091);中国科学院百人计划项目(CAS2012);沈阳材料科学国家实验室项目(2015RP13);辽宁省自然科学基金项目(2014305012,2015020176).
详细信息
    通讯作者:

    曾尤,博士,研究员.E-mail:yzeng@imr.ac.cn

  • 中图分类号: TB332

Research progress and potential applications for graphene/polymer composites

Funds: Creative Research Groups of National Natural Science Foundation of China (51521091); Hundred Talents Program of Chinese Academy of Sciences (CAS2012); Shenyang National Laboratory for Materials Science of China (2015RP13); Natural Science Foundation of Liaoning Province (2014305012, 2015020176).
  • 摘要: 随着石墨烯低成本宏量制备技术的突破,石墨烯的工业化应用进程已引起人们广泛关注。本文介绍了石墨烯在聚合物基复合材料领域的研究进展,侧重阐述石墨烯/聚合物复合材料在力学增强、导电/导热网络构建、防腐阻燃等方面的代表性研究成果,同时对商业化石墨烯产品及其复合材料应用进行了简单评述,探讨了石墨烯/聚合物复合材料领域目前存在的主要问题及未来发展趋势。
  • [1] Bianco A, Cheng H M, Enoki T, et al. All in the graphene family a recommended nomenclature for two-dimensional carbon materials[J]. Carbon, 2013, 65:1-6.
    [2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    [3] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
    [4] Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11):1350-1375.
    [5] Bai H, Li C, Shi G Q. Functional composite materials based on chemically converted graphene[J]. Advanced Materials, 2011, 23(9):1089-1115.
    [6] Huang X, Qi X Y, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2):666-686.
    [7] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
    [8] Verdejo R, Bernal M M, Romasanta L J, et al. Graphene filled polymer nanocomposites[J]. Journal of Materials Chemistry, 2011, 21(10):3301-3310.
    [9] Mittal G, Dhand V, Rhee K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 21:11-25.
    [10] Geng X M, Guo Y F, Li D F, et al. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene[J]. Scientific Reports, 2013, 3:464-467.
    [11] Ren W C, Cheng H M. The global growth of graphene[J]. Nature Nanotechnology, 2014, 9(10):726-730.
    [12] Du J H, Cheng H M. The fabrication, properties, and uses of graphene/polymer composites[J]. Macromolecular Chemistry and Physics, 2012, 213(10-11):1060-1077.
    [13] Greil P. Perspectives of nano-carbon based engineering materials[J]. Advanced Engineering Materials, 2015, 17(2):124-137.
    [14] WANG Xu-zhen, LIU Ning, HU Han, et al. Fabrication of three-dimensional MoS2-graphene hybrid monoliths and their catalytic performance for hydride sulfurization[J]. New Carbon Materials, 2014, 29(2):81-88.
    [15] Berman D, Erdemir A, Sumant A V. Graphene:A new emerging lubricant[J]. Materials Today, 2014, 17(1):31-42.
    [16] Sun X M, Sun H, Li H P, et al. Developing polymer composite materials:Carbon nanotubes or graphene?[J]. Advanced Materials, 2013, 25(37):5153-5176.
    [17] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9):563-568.
    [18] Cong H P, Chen J F, Yu S H. Graphene-based macroscopic assemblies and architectures:An emerging material system[J]. Chemical Society Reviews, 2014, 43(21):7295-7325.
    [19] James D K, Tour J M. Graphene:Powder, flakes, ribbons, and sheets[J]. Accounts of Chemical Research, 2013, 46(10):2307-2318.
    [20] Zhao W F, Fang M, Wu F R, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J]. Journal of Materials Chemistry, 2010, 20(28):5817-5819.
    [21] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide:Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
    [22] 中国石墨烯产业技术创新战略联盟[J]. 中国科技产业, 2014(8):27-27.
    [23] Saleem H, Edathil A, Ncube T, et al. Mechanical and thermal properties of thermoset-graphene nanocomposites[J]. Macromolecular Materials and Engineering, 2016, 301(3):231-259.
    [24] Gurunathan T, Rao C R K, Narayan R, et al. Polyurethane conductive blends and composites:Synthesis and applications perspective[J]. Journal of Materials Science, 2013, 48(1):67-80.
    [25] Li Q, Guo Y, Li W, et al. Ultrahigh thermal conductivity of assembled aligned multi layer graphene/epoxy composite[J]. Chemistry of Materials, 2014, 26(15):4459-4465.
    [26] Tang Z H, Guo B C, Zhang L Q, et al. Graphene/rubber nanocomposites[J]. Acta Polymerica Sinica, 2014, (7):865-877.
    [27] Wang H, Xie G, Fang M, et al. Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene[J]. Composites Part B-Engineering, 2015, 79:444-450.
    [28] You F, Wang D R. Progress on graphene/polymer nanocomposites with superior dielectric properties[J]. Acta Polymerica Sinica, 2014, (7):878-884.
    [29] Yu X W, Shi G Q. Preparation and applications of graphene/polymer composite thin films[J]. Acta Polymerica Sinica, 2014, (7):885-895.
    [30] Kuang D, Hu W B. Research progress of graphene composites[J]. Journal of Inorganic Materials, 2013, 28(3):235-246.
    [31] Layek R K, Nandi A K. A review on synthesis and properties of polymer functionalized graphene[J]. Polymer, 2013, 54(19):5087-5103.
    [32] Saravanan N, Rajasekar R, Mahalakshmi S, et al. Graphene and modified graphene-based polymer nanocomposites-a review[J]. Journal of Reinforced Plastics and Composites, 2014, 33(12):1158-1180.
    [33] Sengupta R, Bhattacharya M, Bandyopadhyay S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Progress in Polymer Science, 2011, 36(5):638-670.
    [34] Shah R, Kausar A, Muhammad B, et al. Progression from graphene and graphene oxide to high performance polymer-based nanocomposite:A review[J]. Polymer-Plastics Technology and Engineering, 2015, 54(2):173-183.
    [35] Tjong S C. Polymer composites with graphene nanofillers:Electrical properties and applications[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(2):1154-1168.
    [36] Zhang L, Wu J T, Jiang L. Graphene and its polymer nanocomposites[J]. Progress in Chemistry, 2014, 26(4):560-571.
    [37] Zhao D M, Li Z W, Liu L D, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chimica Sinica, 2014, 72(2):185-200.
    [38] 黄桂荣, 刘洪波, 杨丽, 等. 石墨烯/酚醛树脂纳米复合材料的热解行为[J]. 新型炭材料, 2015, 30(5):412-418. (HUANG Gui-rong, LIU Hong-bo, YANG Li, et al. Pyrolysis behavior of graphene/phenolic resin composites[J]. New Carbon Materials, 2015, 30(5):412-418.)
    [39] 张志毅, 张焕, 寿金泉, 等. 原位制备还原氧化石墨烯增强环氧树脂基复合材料及其形状记忆性能[J]. 新型炭材料, 2015, 30(5):404-411. (ZHANG Zhi-yi, ZHANG Huang, SHOU Jin-quan,et al. Preparation of reduced graphene oxide-reinforced epoxy resin composites and their shape memory properties[J]. New Carbon Materials, 2015, 30(5):404-411.)
    [40] Rohini R, Katti P, Bose S. Tailoring the interface in graphene/thermoset polymer composites:A critical review[J]. Polymer, 2015, 70:A17-A34.
    [41] Texter J. Graphene dispersions[J]. Current Opinion in Colloid & Interface Science, 2014, 19(2):163-174.
    [42] Tkalya E E, Ghislandi M, de With G, et al. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites[J]. Current Opinion in Colloid & Interface Science, 2012, 17(4):225-231.
    [43] Zhang X, Fan X, Yan C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. Acs Applied Materials & Interfaces, 2012, 4(3):1543-1552.
    [44] Coleman J N. Liquid exfoliation of defect-free graphene[J]. Accounts of Chemical Research, 2013, 46(1):14-22.
    [45] Shen B, Zhai W T, Tao M M, et al. Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites[J]. Composites Science and Technology, 2013, 77:87-94.
    [46] Li F, Liu Y, Qu C, et al. Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating[J]. Polymer, 2015, 59:155-165.
    [47] Loh K P, Bao Q L, Ang P K, et al. The chemistry of graphene[J]. Journal of Materials Chemistry, 2010, 20(12):2277-2289.
    [48] Hadden C M, Klimek-McDonald D R, Pineda E J, et al. Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites:Multiscale modeling and experiments[J]. Carbon, 2015, 95:100-112.
    [49] Pan L, Liu Y T, Xie X M. Progress in high-performance graphene/polymer nanocomposites-design of filler/matrix interfacial interactions and their influences[J]. Acta Polymerica Sinica, 2014, (6):724-736.
    [50] Qin W, Vautard F, Drzal L T, et al. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplateletsat the fiber-matrix interphase[J]. Composites Part B-Engineering, 2015, 69:335-341.
    [51] Song S H, Park K H, Kim B H, et al. Enhanced thermal conductivity of epoxygraphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials, 2013, 25(5):732-737.
    [52] Young R J, Kinloch I A, Gong L, et al. The mechanics of graphene nanocomposites:A review[J]. Composites Science and Technology, 2012, 72(12):1459-1476.
    [53] Teng C C, Ma C C M, Lu C H, et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49(15):5107-5116.
    [54] Cheng Q F, Jiang L, Tang Z Y. Bioinspired layered materials with superior mechanical performance[J]. Accounts of Chemical Research, 2014, 47(4):1256-1266.
    [55] Yang M, Hou Y, Kotov N A. Graphene-based multilayers:Critical evaluation of materials assembly techniques[J]. Nano Today, 2012, 7(5):430-447.
    [56] Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010, 43(16):6716-6723.
    [57] Istrate O M, Paton K R, Khan U, et al. Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level[J]. Carbon, 2014, 78:243-249.
    [58] Wang H, Xie G Y, Zhu Z G, et al. Enhanced tribological performance of the multi-layer graphene filled poly(vinyl chloride) composites[J]. Composites Part a-Applied Science and Manufacturing, 2014, 67:268-273.
    [59] Wang H, Xie G Y, Ying Z, et al. Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films[J]. Journal of Materials Science & Technology, 2015, 31(4):340-344.
    [60] Hu N T, Wei L M, Wang Y Y, et al. Graphene oxide reinforced polyimide nanocomposites via in situ polymerization[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(1):173-178.
    [61] Xu Z, Gao C. Graphene in macroscopic order:Liquid crystals and wet-spun fibers[J]. Accounts of Chemical Research, 2014, 47(4):1267-1276.
    [62] Zang J, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene[J]. Nature Materials, 2013, 12(4):321-325.
    [63] Shang J, Chen Y, Zhou Y, et al. Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites[J]. Polymer, 2015, 68:131-139.
    [64] Wang H, Xie G, Yang C, et al. Enhanced toughness of multilayer graphene filled poly(vinyl chloride) composites prepared using melt-mixing method[J]. Polymer Composites, 2015, DOI: 10.1002/pc.23569.
    [65] Jones W E, Chiguma J, Johnson E, et al. Electrically and thermally conducting nanocomposites for electronic applications[J]. Materials, 2010, 3(2):1478-1496.
    [66] Mao C, Zhu Y, Jiang W. Design of electrical conductive composites:Tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends[J]. Acs Applied Materials & Interfaces, 2012, 4(10):5281-5286.
    [67] Deng H, Lin L, Ji M Z, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science, 2014, 39(4):627-655.
    [68] Zeng Y, Lu G X, Wang H, et al. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites[J]. Scientific Reports, 2014, 4:6684-6684.
    [69] Du J H, Zhao L, Zeng Y, et al. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure[J]. Carbon, 2011, 49(4):1094-1100.
    [70] Mengkai L, Chunxiao G, Hongliang H, et al. Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure[J]. Carbon, 2013, 65:371-373.
    [71] Verma D, Gope P C, Shandilya A, et al. Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites:A review[J]. Transactions of the Indian Institute of Metals, 2014, 67(6):803-816.
    [72] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6):424-428.
    [73] Shen B, Zhai W T, Lu D D, et al. Fabrication of microcellular polymer/graphene nanocomposite foams[J]. Polymer International, 2012, 61(12):1693-1702.
    [74] Vo N H, Dao T D, Jeong H M. Electrically conductive graphene/poly(methyl methacrylate) composites with ultra-low percolation threshold by electrostatic self-assembly in aqueous medium[J]. Macromolecular Chemistry and Physics, 2015, 216(7):770-782.
    [75] Araby S, Meng Q S, Zhang L Q, et al. Elastomeric composites based on carbon nanomaterials[J]. Nanotechnology, 2015, 26(11).
    [76] Chu K, Jia C-C, Li W-S. Effective thermal conductivity of graphene-based composites[J]. Applied Physics Letters, 2012, 101(12).
    [77] Chu K, Li W S, Dong H. Role of graphene waviness on the thermal conductivity of graphene composites[J]. Applied Physics a-Materials Science & Processing, 2013, 111(1):221-225.
    [78] Li Z, Wang D, Zhang M, et al. Enhancement of the thermal conductivity of polymer composites with Ag-graphene hybrids as fillers[J]. Physica Status Solidi a-Applications and Materials Science, 2014, 211(9):2142-2149.
    [79] Noh Y J, Kim S Y. Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets[J]. Polymer Testing, 2015, 45:132-138.
    [80] Qian R, Yu J, Wu C, et al. Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity[J]. RSC Advances, 2013, 3(38):17373-17379.
    [81] Wegrzyn M, Ortega A, Benedito A, et al. Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets[J]. Journal of Applied Polymer Science, 2015, 132(37).
    [82] Yan H, Tang Y, Long W, et al. Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets[J]. Journal of Materials Science, 2014, 49(15):5256-5264.
    [83] Kyhl L, Nielsen S F, Cabo A G, et al. Graphene as an anti-corrosion coating layer[J]. Faraday Discussions, 2015, 180:495-509.
    [84] Park J H, Park J M. Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application[J]. Surface & Coatings Technology, 2014, 254:167-174.
    [85] Li H, Chen L, Zhang Y, et al. Synthesis of MoSe2/reduced graphene oxide composites with improved tribological properties for oil-based additives[J]. Crystal Research and Technology, 2014, 49(4):204-211.
    [86] Shen X J, Pei X Q, Liu Y, et al. Tribological performance of carbon nanotube-graphene oxide hybrid/epoxy composites[J]. Composites Part B-Engineering, 2014, 57:120-125.
    [87] Yazdani B, Xu F, Ahmad I, et al. Tribological performance of graphene/carbon nanotube hybrid reinforced Al2O3 composites[J]. Scientific Reports, 2015, 5.
    [88] Dittrich B, Wartig K A, Hofmann D, et al. Flame retardancy through carbon nanomaterials:Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene[J]. Polymer Degradation and Stability, 2013, 98(8):1495-1505.
    [89] Song P A, Yu Y M, Zhang T, et al. Permeability, viscoelasticity, and flammability performances and their relationship to polymer nanocomposites[J]. Industrial & Engineering Chemistry Research, 2012, 51(21):7255-7263.
    [90] Chao D, Jianjun J, Fa L, et al. Effects of electrophoretically deposited graphene oxide coatings on interfacial properties of carbon fiber composite[J]. Journal of Materials Science, 2015, 50(17):5886-5892.
    [91] Deng C, Jiang J, Liu F, et al. Influence of graphene oxide coatings on carbon fiber by ultrasonically assisted electrophoretic deposition on its composite interfacial property[J]. Surface & Coatings Technology, 2015, 272:176-181.
    [92] Chen J, Zhao D, Jin X, et al. Modifying glass fibers with graphene oxide:Towards high-performance polymer composites[J]. Composites Science and Technology, 2014, 97:41-45.
    [93] Chen Y, Sun J, Gao J, et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture[J]. Advanced Materials, 2015, 27(47):7839-7846.
    [94] Kamar N T, Hossain M M, Khomenko A, et al. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets[J]. Composites Part a-Applied Science and Manufacturing, 2015, 70:82-92.
    [95] Kong Q Q, Liu Z, Gao J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials, 2014, 24(27):4222-4228.
    [96] Liu G Q, Shi F Z, Li Y G, et al. Preparation and electrical properties of graphene coated glass fiber composites[J]. Journal of Inorganic Materials, 2015, 30(7):763-768.
  • 加载中
图(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  2
  • PDF下载量:  1544
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 录用日期:  2016-12-26
  • 修回日期:  2016-12-06
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回