留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷酸法活性炭作为离子液体超级电容器电极材料的研究

张秋红 左宋林 卫歆雨 王永芳

张秋红, 左宋林, 卫歆雨, 王永芳. 磷酸法活性炭作为离子液体超级电容器电极材料的研究. 新型炭材料, 2018, 33(1): 61-70.
引用本文: 张秋红, 左宋林, 卫歆雨, 王永芳. 磷酸法活性炭作为离子液体超级电容器电极材料的研究. 新型炭材料, 2018, 33(1): 61-70.
ZHANG Qiu-hong, ZUO Song-lin, WEI Xin-yu, WANG Yong-fang. H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte. New Carbon Mater., 2018, 33(1): 61-70.
Citation: ZHANG Qiu-hong, ZUO Song-lin, WEI Xin-yu, WANG Yong-fang. H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte. New Carbon Mater., 2018, 33(1): 61-70.

磷酸法活性炭作为离子液体超级电容器电极材料的研究

基金项目: 林业公益性行业科研专项(201404611);教育部博士点博导基金(20133204110007).
详细信息
    作者简介:

    张秋红,硕士研究生.E-mail:qhzhang1234@163.com

    通讯作者:

    左宋林,博士,教授.E-mail:zslnl@njfu.com.cn

  • 中图分类号: TQ127.1+1

H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte

Funds: Special Fund for Forest Scientific Research in the Public Welfare(201404611);Doctoral Supervisor Foundation from Ministry of Education Doctor Station(20133204110007).
  • 摘要: 为了研究工业化上广泛应用的磷酸活化法所制备的活性炭在离子液体基超级电容器领域的应用潜力,本文采用磷酸作为活化剂,杉木屑作为原料,制备活性炭电极材料。采用N2吸附/脱附等温线、扫描电子显微镜、X射线光电子能谱等方法表征了活性炭的孔隙结构与形态。采用[BMIM][PF6]离子液体作为电解质,通过循环伏安法、恒电流充/放电和交流阻抗等方法研究了磷酸活性炭作为超级电容器电极材料的电化学性能。结果显示,在800~950℃温度下,通过调节浸渍比,磷酸活化法可以制备出中孔孔容比例达66%以上的中孔活性炭;在浸渍比为3:1的条件下,所制得的活性炭电极的比电容量可达162 F/g,组装成对称电容器的能量密度可达22.5 Wh/kg (在0.5 A/g下);且具有较好的倍率特性和循环稳定性,在5 A/g的电流密度下充/放电5 000次后容量保持率为86%。因此,高温磷酸活化法是一种制备离子液体电解质超级电容器活性炭的方法。
  • Mastragostino M, Soavi F. Strategies for high-performance supercapacitors for HEV[J]. Journal of Power Source, 2007, 174(1):89-93.
    Xu B, Wu F, Chen S, et al. High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs[J]. Electrochimica Acta, 2009, 54(8):2185-2189.
    Xu B, Wu F, Chen R J, et al. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte[J]. Journal of Power Sources, 2010, 195(7):2118-2124.
    Appetechi G B, Montanino M, Carewska M, et al. Chemical-physical properties of bis(perfluoroalkylsulfonyl) imide-based ionic liquids[J]. Electrochimica Acta, 2011, 56(3):1300-1307.
    Lu W, Qu L T, Henry K, et al. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes[J]. Journal of Powers Sources, 2009, 189(2):1270-1277.
    Yan Y F, Cheng Q L, Wang G C, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application[J]. Journal of Power Sources, 2011, 196(18):7835-7840.
    Hwang S W, Hyun S H. Capacitance control of carbon aerogel electrodes[J]. Journal of Non-Crystalline Solids, 2004, 347(347):238-245.
    Liu H T, Zhu G Y. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids[J]. Journal of Power Sources, 2007, 171(171):1054-1061.
    Chmiola J, Yushin G, Dash R K, et al. Double-layer capacitance of carbide derived carbons in sulfuric acid[J]. Electrochemical and Solid State Letters, 2005, 8(7):A357-A360.
    K L Van, T T L Thi. Activation carbon derived from ice husk by NaOH activation and its appilication in supercapacitor[J]. Progress in Natural Science:Materrials International, 2014, 24(3):191-198.
    Li Y T, Pi Y T, Lu L M, et al. Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance[J]. Journal of Power Sources, 2015, 299:519-528.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7:845-854.
    Jagtoyen M, Derbyshire F. Some consideration of the origins of porosity in carbon from chemically activated wood[J]. Carbon, 1993, 31(7):1185-1192.
    Molina-Sabio M, Rodríguez-Reinoso F, Caturla F, et al. Porosity in granular carbons activated with phosphoric acid[J]. Carbon, 1995, 33(8):1105-1113.
    Zuo S L, Liu J L, Yang J X, et al. Effects of the crystallinity of lignocellulosic material on the porosity of phosphoric acid-activated carbon[J]. Carbon, 2009, 47(15):3578-3580.
    Molina-Sabio M, Caturla F, Rodríguez-Reinoso F. Influence of the atmosphere used in the carbonization of phosphoric acid impregnated peach stones[J]. Carbon, 1995, 33(8):1180-1182.
    Zuo S L, Yang J X, Liu J L. Effect of the heating history of impregnated lignocellulosic material on pore development during phosphoric acid activation[J]. Carbon, 2010, 48(11):3293-3295.
    Seredych M, Hulicova-Jurcakova D, Gao Q L, et al. Surface functional groups of carbons and the effects of their chemical character,density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11):1475-1488.
    Huang P L, Luo X, Peng Y Y, et al. Ionic liquid electrolytes with various constituent ions for graphere-based supercapacitors[J]. Electrochimica Acta, 2015, 161:371-377.
    Li T, Jin B K. Electrochemical redox of benzoquinone in ionic liquids[J]. Chemical Journal of Chinese University, 2014, 35(4):847-852.
    Yan X D, Liu Y, Fan X R, et al. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors[J]. Jounal of Power Sources, 2014, 248(10):745-751.
    Puziy A M, Poddubnaya O I, Martínez-Alonso A, et al. Oxygen and phosphorus enriched carbons from lignocellulosic material[J]. Carbon, 2007, 45(10):1941-1950.
    Ortega P F R, Trigueiro J P C, Silva G G, et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2 PVDF and imidazolium ionic liquid[J]. Electrochimical Acta, 2015, 188:809-817.
    Liu H T, Zhu G Y. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids[J]. Journal of Powers Sources, 2007, 171(171):1054-1061.
    Sathyamoorthi S, Suryanarayanan V, Velayutham D. Electrochemical exfoliation and in situ carboxylic functionalization of graphite in non-fluoro ionic liquid for supercapacitor application[J]. Journal of Solid State Electrochemical, 2014, 18(10):2789-2796.
    He X J, Zhang N, Shao X L, et al. A layered-template-nanospace-confinement strategy for production of corrugated grapheme nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal, 2016, 297:121-127.
    Pandey G P, Rastogi A C. Graphere-based all-solid-state supercapacitor with ionic liquid gel polymer electrolyte[J]. Materials Research Society Proceeding, 2012, 1440.
    Oh I, Kim M, Kim J. Carbon-coated Si/MnO2 nanoneedle composites with optimum carbon layer activation for supercapacitor spplications[J]. Chemical Engineering Journal, 2015, 273:82-91.
    Li H Q, Liu R L, Zhao D Y, et al. Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly[J]. Carbon, 2007, 45(13):2628-2635.
    Fu C P, Kuang Y F, Huang Z Y, et al. Supercapacitor based on grapheme and ionic liquid electrolyte[J]. Journal of Solid State Electrochemical, 2011, 15(11-12):2581-2585.
    Zhao X C, Zhang Q, Chen C M, et al. Aromatic sulfide,sulfoxide,and sulfone mesoporous carbon monolith for use in superapacitor[J]. Carbon, 2012, 1(4):624-630.
    Gu W T, Sevilla M, Magasinski A, et al. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors:A case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6(8):2465-2476.
    Yoo H D, Jang J H, Ji H R, et al. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitor[J]. Journal of Power Sources, 2014, 267:411-420.
  • 加载中
图(1)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  212
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-25
  • 录用日期:  2018-02-11
  • 修回日期:  2017-10-15
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回