留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

包覆结构Si/C复合负极材料研究进展

魏剑 秦葱敏 苏欢 王佳敏 李雪婷

魏剑, 秦葱敏, 苏欢, 王佳敏, 李雪婷. 包覆结构Si/C复合负极材料研究进展. 新型炭材料, 2020, 35(2): 97-111.
引用本文: 魏剑, 秦葱敏, 苏欢, 王佳敏, 李雪婷. 包覆结构Si/C复合负极材料研究进展. 新型炭材料, 2020, 35(2): 97-111.
WEI Jian, QIN Cong-min, SU Huan, WANG Jia-min, LI Xue-ting. A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries. New Carbon Mater., 2020, 35(2): 97-111.
Citation: WEI Jian, QIN Cong-min, SU Huan, WANG Jia-min, LI Xue-ting. A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries. New Carbon Mater., 2020, 35(2): 97-111.

包覆结构Si/C复合负极材料研究进展

基金项目: 国家自然科学基金面上项目(51578448,51308447);陕西省自然科学基础研究计划重大基础研究项目(2017ZDJC-18);留学人员科技活动择优资助项目(陕人社函[2016]789号);西安建筑科技大学"雁塔青年学者"项目.
详细信息
    作者简介:

    魏剑,博士,教授.E-mail:weijian@xauat.edu.cn

  • 中图分类号: TM912

A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries

Funds: National Natural Science Foundation of China (51578448, 51308447); Natural Science Basic Research Plan in Shaanxi Province of China (2017ZDJC-18); Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of the People's Republic of China (Shan Ren She Han [2016]789); Xi'an University of Architecture and Technology "Yanta Young Scholars" Project.
  • 摘要: 以包覆结构Si/C复合材料作为负极的锂离子电池(LIBs)具有能量密度高、自放电效率低、循环寿命长等特点。然而,锂在硅中插入/脱出过程的体积膨胀和固体电解质界面膜(SEI)的不稳定性,阻碍了硅的商业化应用。本文通过对近年来新型包覆结构Si/C复合负极材料的构筑方法、电化学性能、比容量和循环性能进行分析和研究,发现包覆结构Si/C复合负极材料不仅可以缓解硅在锂化过程中的体积膨胀和炭层破裂,而且可以有效提高LIBs循环稳定性。因此,Si/C复合材料有望取代石墨成为高容量LIBs的主要负极材料。
  • Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
    Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15):2878-2887.
    Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature material, 2005, 4(5):366-377.
    Tarascon J M, Armand M. Issues and challenges facing re chargeable lithium batteries[J]. Nature, 2001, 414(6861):359-366.
    Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Material, 2010, 9(5):461-461.
    Wang B, Li X L, Zhang X F, et al. Adaptable silcon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes[J]. ACS Nano, 2013, 7(2):1437-1445.
    Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7):2644-2647.
    Safari M. Battery electric vehicles:Looking behind to move forward[J]. Energy Policy, 2018, 115:54-65.
    Yazami R, Hamwi A, Guérin K, et al. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries[J]. Electrochemistry Communications, 2007, 9(7):1850-1855.
    Imanishi N, Hasegawa S, Zhang T, et al. Lithium anode for lithium-air secon-dary batteries[J]. Journal of Power Sources, 2008, 185(2):1392-1397.
    Xu Q, Li J, Sun J, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted Lithium-ion battery anodes[J]. Advanced Energy Materials, 2016, 7(3):1601481.
    Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limit of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7):7854-7863.
    Netz A, Huggins R A. Amorphous silicon formed in situ as negative electrode reactant in lithium cells[J]. Solid State Ionics, Diffusion & Reactions, 2004, 175(1-4):215-219.
    Zhao J, Li J, Ying P, et al. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt[J]. Chemical Communications, 2013, 49(40):4477-4479.
    Ashuri M, He Q, Shaw L L. Silicon as a potential an-ode material for Li-ion batteries:Where size, geometry and structure matter[J]. Nanoscale, 2016, 8(1):74-103.
    Chen X F, Huang Y, Chen J J, et al. Preparation of graphene supported porous Si@C ternary composites and their electrochemical performance as high capacity anode materials for Li-ion batteries[J]. Ceramics International, 2015, 41(7):8533-8540.
    Sethuraman V A, Chon M J, Shimshak M, et al. In situ, measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2011, 195(15):5062-5066.
    Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26):9239-9249.
    Umeno T, Fukuda K, Wnag H, et al. Novel anode material for lithium-ion batteries:Carbon-coated silicon prepared by thermal vapor decomposition[J]. Chemistry Letters, 2001, 30(1-2):1186-1187.
    Guo Z P, Jia D Z, Yuan L, et al. Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries[J]. Journal of Power Sources, 2006, 159(1):332-335.
    Holzapfel M, Buqa H, Scheifele W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J]. Chemical Communication, 2005, 28(12):1566-1568.
    Uono H, Kim B C, Fuse T, et al. Optimized structure of silicon/carbon/graphite composites as an anode material for Li-ion batteries[J]. Journal of Electrochemical Society, 2006, 153(9):A1708-A1713.
    Ji H R, Kim J W, Sung Y E, et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochemical and Solid-State Letters, 2004, 7(10):A306-A309.
    Zhang X N, Huang P X, Li G R, et al. Si-AB composites as anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2007, 9(4):713-717.
    Chen X L, Gerasopoulos K, Guo J C, et al. Virus-enabled silicon anode for Lithium-ion batteries[J]. ACS Nano, 2010, 4(9):5366-5372.
    Yao Y, McDowell M T, Ryu I, et al. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes[J]. Nano Letters, 2011, 11(9):4018-4025.
    Song T, Xia J L, Lee J H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Letters, 2010, 10(5):1710-1716.
    Ge M, Rong J, Fang X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5):2318-2328.
    Gan L, Guo H J, Wang Z X, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries[J]. Electrochimica Acta, 2013, 104(1):117-123.
    Shu J, Li H, Yang R Z, et al. Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2006, 8(1):51-54.
    Luo J Y, Zhao X, Wu J S, et al. Crumpled graphene encapsulated Si nanoparticles for lithium ion battery anodes[J]. Chemistry Letters, 2012, 3(13):1824-1829.
    Hieu N T, Suk J, Kim D W, et al. Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes[J]. Synthetic Metals, 2014, 198:36-40.
    Kim J Y, Dan T N, Kang J S, et al. Facile synthesis and stable cycling ability of hollow submicron silicon oxide-carbon composite anode material for Li-ion battery[J]. Journal of Alloys and Compounds, 2015, 633(5):92-96.
    Tang X, Wen G, Song Y. Novel scalable synthesis of porous silicon/carbon composite as anode material for superior lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 739:510-517.
    Tang X, Wen G, Song Y. Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly[J]. Applied Surface Science, 2018, 436:398-404.
    Hwa Y, Kim W S, Hong S H, et al. High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries[J]. Electrochimica Acta, 2012, 71(3):201-205.
    Gu M S, Ko S H, Yoo S M, et al. Double locked silver-coated silicon nanoparticle/graphene core/shell fiber for high-performance lithium-ion battery anodes[J]. Journal of Power Sources, 2015, 300:351-357.
    Li S, Qin X, Zhang H, et al. Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries[J]. Electrochemistry Communications, 2014, 49(49):98-102.
    Yu C, Gu X Y, Yu H K, et al. Degradation of organic dyes by Si/SiOx, core-shell nanowires:Spontaneous generation of superoxides without light irradiation[J]. Chemosphere, 2016, 144(16):836-841.
    Du Z P, Li E, Li G J, et al. One-step strategy for synthesis of yolk-shell silica spheres using trisiloxane-tailed ionic liquids as a template[J]. Journal of Materials Science, 2014, 49(14):4919-4926.
    Zhang R, Du Y, Li D, et al. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework[J]. Advanced Materials, 2014, 26(39):6749-6755.
    Su L, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale, 2011, 3(10):3967-3983.
    Zhao T K, Liu Y N, Li T H, et al. Electrochemical performance of amorphous carbon nanotube as anode materials for lithium ion battery[J]. Journal of Nanoscience Nanotechnology, 2010, 10(6):3873-3877.
    Zhang Y, Du N, Zhu S J, et al. Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials[J]. Electrochimical Acta, 2017, 252:4919-4926.
    Su M R, Wan H F, Liu Y J, et al. Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries[J]. Powder Technology, 2017, 323:294-300.
    Park S W, Kim J C, Dar M A, et al. Enhanced cycle stability of silicon coated with waste poly(vinyl butyral)-directed carbon for lithium-ion battery anodes[J]. Journal of Alloys and Compounds, 2017, 698:525-531.
    Pan Q R, Zuo P J, Lou S F, et al. Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017,723:434-440.
    Terranova M L, Orlanducci S, Tamburri E, et al. Si/C hybrid nanostructures for Li-ion anodes:An overview[J]. Journal of Power Sources, 2014, 246:167-177.
    Zhang M, Zhang T F, Ma Y F, et al. Latest development of nanostructured Si/C materials for lithium anode studies and applications[J]. Energy Storage Materials, 2016, 4:1-14.
    Su X, Wu Q L, Li J C, et al. Silicon-based nano materials for Lithium-ion batteries:A Review[J]. Advanced Energy Materials, 2014, 4(1):1300882
    Zhu X Y, Yang D J, Li J J, et al. Nanostructured Si-based anodes for Lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2015, 15, 15(1):15-30.
    Nitta N, Yushin G. High-capacity anode materials for Lithium-ion batteries:Choice of elements and structures for active particles[J]. Particle and Particle Systems Characterization, 2014, 31(3):317-336.
    Ko M, Oh P, Chae S, et al. Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications[J]. Small, 2015, 11(33):4058-4073.
    Roy P, Srivastava S K. Nanostructured anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2015, 3(6):2454-2484.
    Zhao H, Yuan W, Liu G. Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries[J]. Nano Today, 2015, 10(2):193-212.
    Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2017, 27(4):1067-1090.
    Su L, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale, 2011, 3(10):3967-3983.
    Zhang J, Liu J. Research advances in polymer emulsion based on "core-shell" structure particle design[J]. Advances in Colloid and Interface Science, 2013, 197-198:118-131.
    Hwa Y, Kim W S, Hong S H, et al. High capacity and rate capability of core-shell structured Nano-Si/C anode for Li-ion batteries[J]. Electrochimica Acta, 2012, 71(none):201-205.
    Wang D, Gao M, Pan H, et al. High performance amorphous Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J]. Journal of Power Sources, 2014, 256:190-199.
    Gao T Y, Gong Z L. Preparations and electrochemical performances of carbon coated silicon/graphite composites[J]. Journal of Electrochemistry, 2018, 24(3):253-261.
    Wang J, Li S L, Zhao Y, et al. The influence of different Si:C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries[J]. RSC Advances, 2018, 8(12):6660-6666.
    Liu J, Li N, Goodman M, et al. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes[J]. ACS Nano, 2015, 9(2):1985-1994.
    Liu Y, Wen Z Y, Wang X Y, et al. Electrochemical behaviors of Si/C composite synthesized from containing precursors[J]. Journal of Power Sources, 2009, 189(1):733-737.
    Zhou R, Guo H, Yang Y, et al. N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray dried Si/graphite composite anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2016, 689:130-137.
    Shao D, Tang D, Mai Y, et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries[J]. Journal of Materials Chemistry, 2013, 1(47):15068-15075.
    Jeong H M, Lee S Y, Shin W H, et al. Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes[J]. RSC Advances, 2012, 2(10):4311-4318.
    Tao H C, Yang X L, Zhang L L, et al. Double-walled core-shell structured Si&SiO2@C nanocomposite as anode for lithium-ion batteries[J]. Ionics, 2014, 20(11):1547-1552.
    Liu N, Wu H, Mcdowell M T, et al. A Yolk-shell design for stabilized and scalable Li-Ion Battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321.
    Zhou X Y, Tang J J, Yang J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013, 87(Complete):663-668.
    Tao H, Fan L Z, Song W L, et al. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries[J]. Nanoscale, 2014, 6(6):3138-3142.
    Lin D, Lu Z, Hsu P C, et al. A high tap density secondary silicon particle anodes by scalable mechanical pressing for Lithium-ion batteries[J]. Energy & Environmental Science, 2015, 8(8):2371-2376.
    Xie J, Tong L, Su L, et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources, 2017, 342:529-536.
    Sun Z, Tao S, Song X, et al. A Silicon/double-shelled carbon yolk-like nanostructure as high-performance anode materials for lithium-ion battery[J]. Journal of the Electrochemical Society, 2015, 162(8):A1530-A1536.
    Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Sci Rep, 2015, 3(5):1-9.
    Wu H, Zheng G Y, Liu N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2012, 12(2):904-909.
    Hwang T H, Lee Y M, Kong B S, et al. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes[J]. Nano Letters, 2012, 12(2):802-807.
    Wua H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5):414-429
    Liu N, Lu Z, Zhao J, et al. A pomegranate-inspi red nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3):187-192.
    Chen S, Shen L, Van Aken P A, et al. Dual-functionalized double carbon shells coated nanoparticles for high performance Lithium-ion batteries[J]. Advanced Materials, 2017, 29(21):160560.
    Zhang M, Hou X H, Wang J, et al. Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2014, 588:206-211.
    Kim B C, Uno H, Satoh T, et al. Li-ion battery anodes properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill[J]. Solid State Ionics, 2004, 172(1-4):33-37.
    Datta M K, Kumta P N. Silicon and carbon based composite anodes for lithium ion batteries[J]. Journal of Power Source, 2006, 158(1):557-563.
    Wang H, Xie J, Zhang S, et al. Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials[J]. RSC Advances, 2016, 6(74):69882-69888.
    Xiao L, Song Y, Tian X D, et al. Preparation and electrochemical properties of Na F-Si-C-RGO hybrids[J]. New Carbon Materials, 2017, 32(4):304-310.
    Zuo X, Zhu J, Müller-Buschbaum P, et al. Silicon based lithium-ion battery anodes:A chronicle perspective review[J]. Nano Energy, 2017, 31(Complete):113-143.
    Ko M, Chae S, Jeong S. Elastica-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high rate lithium ion batteries[J]. ACS Nano, 2014, 8(8):8591-8599.
    Son I H, Park J H, Kwon S, et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density[J]. Nature Communications, 2015, 6(1):7393-7401.
    Zhou X, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advance Energy Material, 2012, 2(9):1086-1090.
    DiLeo R A, Ganter M J, Thone M N, et al. Balanced approach to safety of high capacity silicon-germanium-carbon nanotube freestanding lithium ion battery anodes[J]. Nano Energy, 2013, 2(2):268-275.
    Kang C, Lahiri I, Baskaran R, et al. 3-dimensional carbon nanotube for Li-ion battery anode[J]. Journal of Power Sources, 2012, 219(none):364-370.
    Palomino J, Varshney D, Weiner B R, et al. Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable Lithium-ion battery[J]. Journal of physical Chemistry, 2015, 119(36):21125-21134.
    Wang W, Kumta P N. Nanostructured hybrid sili con/carbon nanotube heterostructures:Reversible high-capacity Lithium-ion anodes[J]. ACS Nano, 2010, 4(4):2233-2241.
    Xiao Q, Fan Y, Wang X, et al. A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity[J]. Energy & Environmental Science, 2014, 7(2):655-661.
    Fan Y, Zhang Q, Lu C, et al. High performance carbon nanotube-silicon core-shell nanowires with a rationally structured core for lithium ion battery anodes[J]. Nanoscale, 2013, 5(4):1503-1506.
    Yue W, Jiang S, Huang W, et al. Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries[J]. Journal of Material Chemistry, A, 2013, 1(23):6928-6933.
    Yin L H, Wu M B, Li Y P, et al. Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries[J]. New Carbon Materials, 2017, 32(4):311-318.
    Mori T, Chen C J, Hung T F, et al. High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries[J]. Electrochimica Acta, 2015, 165:166-172.
    Liu X, Zhang J, Si W, et al. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life[J]. ACS Nano, 2015, 9(2):1198-1205.
    Zhou M, Li X, Wang B, et al. High-performance silicon battery anodes enabled by engineering graphene assemblies[J]. Nano Letters, 2015, 15(9):6222-6228.
    Agyeman D A, Song K, Lee G H, et al. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery[J]. Advanced Energy Materials, 2016, 6(20):1600904.
  • 加载中
图(1)
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  338
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 录用日期:  2020-04-28
  • 修回日期:  2020-03-20
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回