留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杂原子掺杂三维石墨烯水凝胶的制备及电化学性能

徐惠 杨曙华 朱院强 范欣 陈敏章

徐惠, 杨曙华, 朱院强, 范欣, 陈敏章. 杂原子掺杂三维石墨烯水凝胶的制备及电化学性能[J]. 新型炭材料, 2020, 35(2): 140-147.
引用本文: 徐惠, 杨曙华, 朱院强, 范欣, 陈敏章. 杂原子掺杂三维石墨烯水凝胶的制备及电化学性能[J]. 新型炭材料, 2020, 35(2): 140-147.
XU Hui, YANG Shu-hua, ZHU Yuan-qiang, FAN Xin, CHEN Min-zhang. Preparation and electrochemical properties of heteroatom-doped graphene hydrogels[J]. NEW CARBON MATERIALS, 2020, 35(2): 140-147.
Citation: XU Hui, YANG Shu-hua, ZHU Yuan-qiang, FAN Xin, CHEN Min-zhang. Preparation and electrochemical properties of heteroatom-doped graphene hydrogels[J]. NEW CARBON MATERIALS, 2020, 35(2): 140-147.

杂原子掺杂三维石墨烯水凝胶的制备及电化学性能

基金项目: 国家自然科学基金(51503092,51763015);甘肃省基础创新研究基金(1606RJIA322);兰州理工大学红柳一流学科建设项目.
详细信息
    通讯作者:

    徐惠,教授.E-mail:xuhui@lut.cn

  • 中图分类号: TQ127.1+1

Preparation and electrochemical properties of heteroatom-doped graphene hydrogels

Funds: National Natural Science Foundation of China (51503092, 51763015); Foundation for Innovation Groups of Basic Research in Gansu Province (1606RJIA322); Lanzhou University of Technology Hongliu First-class Discipline Construction Program.
  • 摘要: 采用水热法分别制备了氮、磷、硫等杂原子掺杂的三维石墨烯水凝胶电极材料。利用扫描电子显微镜(SEM)、透射电镜(TEM)、拉曼光谱仪、X射线衍射仪(XRD)和光电子能谱仪(XPS)对材料的微观结构进行了分析,并利用电化学方法对材料的电化学性能进行了研究。结果表明:氮、磷、硫等杂原子掺杂入石墨烯晶格,掺杂的石墨烯呈现三维多孔层状形貌。杂原子的掺杂均有利于提高石墨烯的电化学性能,其中以磷掺杂石墨烯电极材料的性能最佳,原子半径最大的P掺杂使石墨烯晶格畸变加剧,比表面积显著增大进而保证了电解质在材料中的快速嵌入和脱出。在1 mol/L H2SO4的电解液中,电流密度为1 mA/cm2时,其比容量388 F/g,组装成对称双电极电池装置,其能量密度在1 A/g的电流密度下可达到25.2 Wh/kg。优异的电容性能主要源于杂原子掺杂所提供的法拉第赝电容。
  • Guo S, Dong S. Graphene nanosheet:Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5):2644-2672.
    张丽芳, 魏伟, 吕伟. 石墨烯基宏观体:制备、性质及潜在应用[J]. 新型炭材料, 2013, 28(3):161-171. (ZHANG Li-fang, WEI Wei, LU Wei, et al. Graphene-based macroform:preparation, properties and applications[J]. New Carbon Materials, 2013, 28(3):161-171.)
    LIU Xiaping, WANG Huicai, SUN Qiang, et al.Research progress of graphene and 3D graphene composites[J]. Chemical Industry And Engineering Progress, 2018, 37(1):168-174.
    Min S L, Choi H J, Baek J B. Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors[J]. Applied Energy, 2016, 195:1071-1078.
    Zuo Z, Jiang Z, Manthiram A. Porous B-doped graphene inspired by Fried-Ice for supercapacitors and metal-free catalysts[J]. Journal of Materials Chemistry A, 2013, 1(43):13476-13483.
    Song M S, Lee K M, Yu R L, et al. Porously assembled 2D nanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors[J]. J Phys Chem C, 2010, 114(50):22134-22140.
    Xu H, Liu J, Chen Y, et al. Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications[J]. Journal of Materials Science Materials in Electronics, 2017, 28(14):10674-10683.
    Zhang S, Gao H, Huang M, et al. One-step hydrothermal synthesis of nitrogen doping graphene based cobalt oxide and its supercapacitive properties[J]. Journal of Alloys & Compounds, 2017, 705:801-805.
    Zhang Y, Wen G, Gao P, et al. High-performance supercapacitor of macroscopic graphene hydrogels by partial reduction and nitrogen doping of graphene oxide[J]. Electrochimica Acta, 2016, 221:167-176.
    Liu D, Fu C, Zhang N. Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors[J]. Electrochimica Acta, 2016, 213:291-297.
    Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. Acs Nano, 2012, 6(1):205-211.
    Zhou Y, Ma R, Candelaria S L. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction[J]. Journal of Power Sources, 2016, 314:39-48.
    LI Ziqing, HE Wenxiu, ZHANG Yongqiang, et al. Preparation and electrochemical properties of sulfur-nitrogen co-doped graphene[J]. Chemical Industry And Engineering Progress, 2018, 37(07):2712-2719.
    CHEN Zi-Ran,XU You-Hui,HE Zhan-Rong. The structure spectrum and electrical properties of phosphorus-doped graphene[J].Journal of Sichuan University(Natural Science Edition), 2016, 53(3):587-590.
    Wang Z, Li P, Chen Y,et al. Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells[J]. Journal of Power Sources, 2014, 263(5):246-251.
    Sliwak A, Grzyb B, Díez N, et al. Nitrogen-doped reduced graphene oxide as electrode material for high rate supercapacitors[J]. Applied Surface Science, 2017, 399:265-271.
  • 加载中
图(1)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  33
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-28
  • 录用日期:  2020-04-28
  • 修回日期:  2020-04-06
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回