留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导预氧化PAN炭化的反应分子动力学模拟

姚良博 杨卫民 谭晶 程礼盛

姚良博, 杨卫民, 谭晶, 程礼盛. 激光诱导预氧化PAN炭化的反应分子动力学模拟. 新型炭材料, 2020, 35(2): 176-183.
引用本文: 姚良博, 杨卫民, 谭晶, 程礼盛. 激光诱导预氧化PAN炭化的反应分子动力学模拟. 新型炭材料, 2020, 35(2): 176-183.
YAO Liang-bo, YANG Wei-min, TAN Jing, CHENG Li-sheng. Reactive molecular dynamics simulation of the laser-induced carbonization of pre-oxidized polyacrylonitrile fibers. New Carbon Mater., 2020, 35(2): 176-183.
Citation: YAO Liang-bo, YANG Wei-min, TAN Jing, CHENG Li-sheng. Reactive molecular dynamics simulation of the laser-induced carbonization of pre-oxidized polyacrylonitrile fibers. New Carbon Mater., 2020, 35(2): 176-183.

激光诱导预氧化PAN炭化的反应分子动力学模拟

基金项目: 国家自然科学基金(51602015).
详细信息
    作者简介:

    姚良博,硕士研究生.E-mail:2015200612@mail.buct.edu.cn

    通讯作者:

    谭晶,博士,副教授.E-mail:tanj@mail.buct.edu.cn;程礼盛,博士,副教授.E-mail:chengls@mail.buct.edu.cn

  • 中图分类号: TQ342+.74

Reactive molecular dynamics simulation of the laser-induced carbonization of pre-oxidized polyacrylonitrile fibers

Funds: National Natural Science Foundation of China(51602015).
  • 摘要: 聚丙烯腈(PAN)分子向类石墨结构的转变过程在PAN基炭纤维的炭化过程中起着关键作用,研究激光诱导PAN分子的炭化过程对于进一步认识激光诱导PAN基炭纤维炭化机理有很大帮助。本文利用反应分子动力学方法模拟研究在2 500 K下,激光诱导预氧化PAN分子炭化过程与传统热处理诱导炭化的差异,分析了两种热处理方法过程中体系的能量变化、化学反应速率、原子波动状态及原子受力情况。结果表明,激光诱导过程由于激光具有使物体快速升温的特性,给辐射的炭纤维带来一定的热冲击应力,致使纤维内部原子波动加剧,活性原子数量增加,原子活性增大,与周边原子发生碰撞和化学反应的几率增大,从而促进石墨结构的形成。使用ReaxFF反应力场研究PAN分子的炭化过程,可以提供详细的反应分子动力学过程,有助于理解炭化过程中石墨结构的形成机理,同时也表明激光辐照PAN基炭纤维能得到更好的炭化效果。
  • Fitzer E. PAN-based carbon fibers-present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters[J]. Carbon, 1989, 27(05):621-645.
    Jain M K, Abhiraman A S J. Conversion of acrylonitrile-based precursor fibers to carbon fiber[J]. Mater Sci, 1987, 22(01):278-300.
    Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science[J]. Part C:Polymer Reviews, 1991, 31(01):1-89.
    Kurban Z, Lovell A, Jenkins D, et al. Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide[J]. European Polymer Journal, 2010, 46(6):1194-1202.
    Telle H H, Urena A G, Donovan R J. Laser Chemistry:Spectroscopy, Dynamics and Applications[M]. England:John Wiley & Sons, 2007:1-9.
    Wang S Y, Xiong W H. Applications of laser technology in materials science[J]. Heat Treatment of Metals, 2005(07):32-36.
    Zhang W S. Application of laser technology in materials science and technology[J]. Development and Application of Materials, 2008, 23(06):89-92.
    姚良博, 谭晶, 杨卫民, 等. 激光与碳纤维相互作用的研究现状及发展趋势[J]. 材料导报, 2017, 31(Z2):392-397, 402. (Yao L B, Tan J, Yang W M, et al. Research status and development trend of interaction between laser and carbon fiber[J]. Materials Review, 2017, 31(Z2):392-397, 402.)
    Yao L, Yang W, Li S, et al. Graphitization of PAN-based carbon fibers by CO2 laser irradiation[J]. Carbon Letters, 2017, 24(1):97-102.
    Sha Y, Yang W, Li S, et al. Laser induced graphitization of PAN-based carbon fibers[J]. RSC Advances, 2018, 8:11543-11550.
    Tan J, Sha Y, Li S Y, et al. A method of ultra-high temperature graphitization for carbon fibers via laser tunnel furnace[J]. Carbon Techniques, 2016, 35(06):47-50.
    Li S Y, Zhang Y C, Sha Y, et al. Effect of laser power and stretching force on the chemical structure and microstructure of PAN-based carbon fibers under laser graphitization[J]. Chemical Industry and Engineering Progress, 2018, 37(02):658-663.
    Saha B, Schatz G C. Carbonization in polyacrylonitrile (PAN) based carbon fibers studied by ReaxFF molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2012, 116(15):4684-4692.
    Desai S, Li C, Shen T, et al. Molecular modeling of the microstructure evolution during the carbonization of PAN-based carbon fibers[J]. Journal of Chemical Physics, 2017, 147:224705.
    Ito A, Okamoto S. Using molecular dynamics to assess mechanical properties of PAN-based carbon fibers comprising imperfect crystals with amorphous structures[J]. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2013, 7(09):1840-1845.
    Okamoto S, Ito A. Molecular dynamics analysis on compressive strength of PAN-based carbon fibers[J]. International Journal of Nanoscience, 2014, 13(04):1440004.
    Kim M A, Jang D, Tejima S, et al. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization[J]. Scientific Reports, 2016, 6:22988.
    Amar M Kamat, Adri C T van Duin, Alexei Yakovlev. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field[J]. Journal of Physical Chemistry A, 2010, 114(48):12561-12572.
    Yang Z, Liu H, He Y H. Molecular dynamics simulation of femtosecond laser ablation of energetic materials[J]. Acta Physico-Chimica Sinica, 2016, 32(08):1977-1982.
    Dong X, Fan X, Fan Y, et al. Reactive molecular dynamics simulation of the pyrolysis and combustion of benzene:ultrahigh temperature and oxygen-induced enhancement of initiation pathways and their effect on carbon black generation[J]. RSC Adv., 2015, 5(54):43695-43704.
    Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultrashort laser pules[J]. Soviet Physics JETP, 1975, 39:375.
    Liu M, Li J. Mechanism of interaction between femto-second laser and metal[J]. Journal of Hebei University(Natural Science Edition), 2010, 30(06):639-642.
    Yan Y, Li L. Molecular dynamics simulation of femtosecond laser irradiating gold foils[J]. Acta Optica Sinica, 2016, 36(08):174-179.
    Yu X. Simulation of laser heating metal film by molecular dynamics combined with Two-temperature Model[J]. China Computer & Communication, 2011, 08:179-181.
    Bai Z M, Cheng L, Tang H, et al. Molecular dynamics simulation of the laser-induced melting of an Al nanofilm[J]. Acta Physico-Chimica Sinica, 2010, 26(12):3143-3149.
    吴鹤. 飞秒激光烧蚀金属与合金的机理及数值模拟[D]. 南华大学, 2010. (Wu H. Mechanism and numerical simulation of femtosecond laser ablating metals and alloy[D]. University of South China, 2010.)
    Collins C B, Davanloo F, Juengerman E M, et al. Laser plasma source of amorphic diamond[J]. Applied Physics Letters, 1989, 54(03):216-221.
    陈冰. 飞秒激光与CuZr非晶合金相互作用的分子动力学模拟研究[D]. 南华大学, 2015. (Chen B. Molecular dynamics study of femtosecond laser ablation CuZr amorphous alloy[D]. University of South China, 2015.)
    Man V H, Van-Oanh N T, Derreumaux P, et al. Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses[J]. Physical Chemistry Chemical Physics, 2016, 18(17):11951-11958.
    Wootton A, Thomas B, Harrowell P. Radiation-induced densification in amorphous silica:A computer simulation study[J]. Journal of Chemical Physics, 2001, 115(07):3336-3341.
    Zheng L, Lambropoulos J C, Schmid A W. UV-laser-induced densification of fused silica:A molecular dynamics study[J]. Journal of Non-Crystalline Solids, 2004, 347(1-3):144-152.
    Tian Y, Du J, Zu X, et al. UV-induced modification of fused silica:Insights from ReaxFF-based molecular dynamics simulations[J]. AIP Advances, 2016, 6(09):095312.
    Hosono H, Ikuta Y, Kinoshita T, et al. Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2[J]. Physical Review Letters, 2001, 87(17):175501.
    Tsai T E, Griscom D L. Experimental evidence for excitonic mechanism of defect generation in high-purity silica[J]. Physical Review Letters, 1991, 67(18):2517.
    Atanasov P A, Nedialkov N N, Imamova S E, et al. Laser ablation of Ni by ultrashort pulses:Molecular dynamics simulation[J]. Applied Surface Science, 2002, 186(1-4):369-373.
    Herrmann R F, Gerlach J, Campbell E E. Molecular dynamics simulation of laser ablation of silicon[J]. Nuclear Instruments and Methods in Physics Research Section B, 1997, 122(03):401-404.
    Herrmann R F, Gerlach J, Campbell E E. Ultrashort pulse laser ablation of silicon:An MD simulation study[J]. Applied Physics A, 1998, 66(01):35-42.
    Xin J T, Zhu W J, Liu C L. Molecular dynamics simulation of radiation effects in Al Foil irradiated by femtosecond laser beams[J]. Explosion and Shock Waves,2004(03):207-211.
    杜娟. 飞秒激光加工硅的分子动力学模拟[D]. 哈尔滨工业大学, 2012. (Du J. Molecular dynamics simulations of femtosecond laser processing of silicon[D]. Harbin Institute of Technology, 2012.)
    Holian B L. Modeling shock-wave deformation via molecular dynamics[J]. Physical Review A, 1988, 37(07):2562.
    Gujba A K, Medraj M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening[J]. Materials, 2014, 7(12):7925-7974.
    Wang X, Li C, Ma Y J, et al. An experimental study on micro clinching of metal foils with cutting by laser shock forming[J]. Materials, 2016, 9(07):571.
    Liu H, Gao S, Yan Z, et al. Investigation on a novel laser impact spot welding[J]. Metals, 2016, 6(08):179.
    Meng X, Zhou J, Huang S, et al. Properties of a laser shock wave in Al-Cu alloy under elevated temperatures:A molecular dynamics simulation study[J]. Materials, 2017, 10(01):73.
    Huang Y H, Song C W, Zhang J J, et al. Molecular dynamics modelling and simulating of femtosecond laser ablation of polymers[J]. High Power Laser and Particle Beams, 2014, 26(12):217-222.
    Huang Y, Song C, Zhang J, et al. Atomistic investigation of ablation of amorphous polystyrene under femtosecond laser pulse[J]. Science China-Physics Mechanics & Astronomy, 2015, 58(03):1-7.
    Huang Y, Song C, Zhang J, et al. Femtosecond laser ablation of polystyrene:A molecular dynamics study[J]. Journal of Applied Polymer Science, 2015, 132(43):42713.
    李鸿健. 并行算法在激光化学反应模拟中的应用研究[D].电子科技大学, 2012. (Li H J. The study of parallel algorithms for laser control of chemical reaction simulations[D]. University of Electronic Science and Technology of China, 2012.)
    Dou Y S, Tang H, Li H J. Method of computer simulation of photochemical reactions[J]. Journal of System Simulation, 2009, 21(03):894-899.
    雷依波. 激光诱导光化学反应模拟与半经验MRCI及其解析梯度程序化研究[D]. 西北大学, 2009. (Lei Y B. Laser induced photochemical reaction simulations and the implement program of semiempirical MRCI with analytic gradients[D]. Northwest University(China), 2009.)
    Graf M, Vogl P. Electromagnetic-fields and dielectric response in empirical tight-binding theory[J]. Physical Review B, 1995, 51(8):4940.
    Chaban V V, Pal S, Prezhdo O V. Laser-induced explosion of nitrated carbon nanotubes:Nonadiabatic and reactive molecular dynamics simulations[J]. Journal of the American Chemical Society, 2016, 138(49):15927-15934.
    Morita K, Murata Y, Ishitani A, et al. Characterization of commercially available PAN (Polyacrylonitrile)-based carbon fibers[J]. Pure and Applied Chemistry, 1986, 58(03):455-468.
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(01):1-19.
    van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105:9396-9409.
    Zhang L Z, van Duin A C T, Zybin S V, et al. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field[J]. Journal of Physical Chemistry B, 2009, 113(31):10770-10778.
    Zhang L Z, Zybin S V, van Duin A C T, et al. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations[J]. Journal of Physical Chemistry A, 2009, 113(40):10619-10640.
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(01):15012.
  • 加载中
图(1)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  215
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 录用日期:  2020-04-28
  • 修回日期:  2020-02-27
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回