留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaCl2催化NaBH4还原氧化石墨烯

杨真真 郑庆彬 邱汉迅 李静 杨俊和

杨真真, 郑庆彬, 邱汉迅, 李静, 杨俊和. CaCl2催化NaBH4还原氧化石墨烯[J]. 新型炭材料, 2015, 30(1): 41-47. doi: 10.1016/S1872-5805(15)60174-3
引用本文: 杨真真, 郑庆彬, 邱汉迅, 李静, 杨俊和. CaCl2催化NaBH4还原氧化石墨烯[J]. 新型炭材料, 2015, 30(1): 41-47. doi: 10.1016/S1872-5805(15)60174-3
YANG Zhen-zhen, ZHENG Qing-bin, QIU Han-xun, LI Jing, YANG Jun-he. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst[J]. NEW CARBON MATERIALS, 2015, 30(1): 41-47. doi: 10.1016/S1872-5805(15)60174-3
Citation: YANG Zhen-zhen, ZHENG Qing-bin, QIU Han-xun, LI Jing, YANG Jun-he. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst[J]. NEW CARBON MATERIALS, 2015, 30(1): 41-47. doi: 10.1016/S1872-5805(15)60174-3

CaCl2催化NaBH4还原氧化石墨烯

doi: 10.1016/S1872-5805(15)60174-3
基金项目: 国家自然科学基金(U1260104, 51102170, 51102168, 51272157, 51102167);上海市浦江人才计划(11PJ1407200).
详细信息
    作者简介:

    杨真真,硕士研究生.E-mail:bestyzz@163.com

    通讯作者:

    李静,博士,副教授.E-mail:lijing6080@usst.edu.cn;杨俊和,博士,教授.E-mail:jhyang@usst.edu.cn

  • 中图分类号: TQ127.1+1

A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst

Funds: National Natural Science Foundation of China (U1260104, 51102170, 51102168, 51272157, 51102167); Shanghai Pujiang Talent program (11PJ1407200), China.
  • 摘要: 以CaCl2作为催化剂、NaBH4为还原剂,还原氧化石墨烯。还原反应能在室温下进行,并以去离子水作为唯一的溶剂,此法是一种低能耗、环保并简易的方法。通过红外光谱、紫外光谱、X射线光电子能谱、表面电阻测量手段研究CaCl2添加量对氧化石墨烯还原程度的影响。采用透射电子显微镜和原子力显微镜观察氧化石墨烯和还原氧化石墨烯的形貌。结果表明,以氯化钙作为催化剂还原氧化石墨烯,能更有效地去除氧化石墨烯表面的含氧官能团,提高还原氧化石墨烯的导电性。当CaCl2添加浓度达到50 mmol/L时,还原氧化石墨烯C/O比达到5.38,表面电阻达到18.6 kΩ/sq。
  • Geim A K, Novoselov K S. The rise of graphene
    [J]. Nature Materials, 2007, 6: 183-191.
    Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon
    [J]. Journal of Materials Chemistry, 2009, 19: 2457-2469.
    Soldano C, Mahmood A, Dujardin E, et al. Production, properties and potential of grapheme
    [J]. Carbon, 2010, 48(8): 2127-2150.
    He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide
    [J]. Chemical Physics Letters, 1998, 287(1-2): 53-56.
    Pei S, Cheng H M. The reduction of graphene oxide
    [J]. Carbon, 2012, 50(9): 3210-3228.
    Moon K, Lee J, Ruoffand S R, et al. Reduced graphene oxide by chemical graphitization
    [J]. Nature Communications, 2010, 1: 73-78.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
    [J]. Carbon, 2007, 45(7): 1558-1565.
    Fan Z, Wang K, Wei T, et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder
    [J]. Carbon, 2010, 48(5): 1686-1689.
    FernJandez-Merino M J, Guardia L, Paredes J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions
    [J]. Journal of Chemical Physics, 2010, 114(14): 6426-6432.
    Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance
    [J]. Advanced Functional Materials, 2009, 19(12): 1987-1992.
    Periasamy M, Thirumalaikumar M. Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis
    [J]. Journal of Organometallic Chemistry, 2000, 609(1-2): 137-151.
    Li J, Lin H, Yang Z, et al. A method for the catalytic reduction of graphene oxide at temperatures below 150 ℃
    [J]. Carbon, 2011, 49(9): 3024 -3030.
    Zheng Q, Ip W H, Lin X, et al. Transparent conductive films consisting of ultralarge graphene sheets produced by langmuir-blodgett assembly
    [J]. ACS Nano, 2011, 5(7): 6039-6051.
    Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide
    [J]. Journal of Chemical Physics, 2006, 110(17): 8535-8539.
    Bagri A, Mattevi C, Alik M, et al. Structural evolution during the reduction of chemically derived graphene oxide
    [J]. Nature Chemistry, 2010, 2(7): 581-587.
    Mkhoyan K A, Contryman A W, Silcox J, et al. Atomic and electronic structure of graphene-oxide
    [J]. Nano Letter, 2009, 9(3): 1058-1063.
    Gao W, Alemany L B, Ci L, et al. New insights into the structure and reduction of graphite oxide
    [J]. Nature Chemistry, 2009, 1(5): 403-408.
    Erickson K, Erni R, Lee Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide
    [J]. Advanced Materials, 2010, 22(40), 4467-4472.
    Liu K, Zhang J, Yang G, et al. Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film
    [J]. Electrochemistry Communications, 2010, 12(3): 402-405.
    Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide
    [J]. ACS Nano, 2010, 4(8): 4806 -4814.
    Pei S F, Zhao J P, Du J H, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids
    [J]. Carbon, 2010, 48(15): 4466-4474.
    Robert C, Wade R C. Catalyzed reduction of organofunctional groups with sodium borohydride
    [J]. Journal of Molecular Catalysis, 1983, 18(3) : 273-297.
    Suzuki Y, Kaneno D, Tomoda S. Theoretical study on the mechanism and diastereoselectivity of NaBH4 reduction
    [J]. The Journal of physical chemistry A, 2009, 113(11): 2578-2583.
    Li J, Yang Z, Qiu H, et al. Microwave-assisted simultaneous reduction and titanate treatment of graphene oxide
    [J]. Jounal of Material Chemistry A, 2013, 1(37): 11451-11456.
  • 加载中
计量
  • 文章访问数:  722
  • HTML全文浏览量:  53
  • PDF下载量:  2095
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-04
  • 录用日期:  2015-02-13
  • 修回日期:  2015-02-03
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回