留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油泥经热化学处理转化成多孔炭材料的可行性

Shohreh Mohammadi Nourollah Mirghaffari

Shohreh Mohammadi, Nourollah Mirghaffari. 油泥经热化学处理转化成多孔炭材料的可行性[J]. 新型炭材料, 2015, 30(4): 310-318. doi: 10.1016/S1872-5805(15)60192-5
引用本文: Shohreh Mohammadi, Nourollah Mirghaffari. 油泥经热化学处理转化成多孔炭材料的可行性[J]. 新型炭材料, 2015, 30(4): 310-318. doi: 10.1016/S1872-5805(15)60192-5
Shohreh Mohammadi, Nourollah Mirghaffari. A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation[J]. NEW CARBON MATERIALS, 2015, 30(4): 310-318. doi: 10.1016/S1872-5805(15)60192-5
Citation: Shohreh Mohammadi, Nourollah Mirghaffari. A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation[J]. NEW CARBON MATERIALS, 2015, 30(4): 310-318. doi: 10.1016/S1872-5805(15)60192-5

油泥经热化学处理转化成多孔炭材料的可行性

doi: 10.1016/S1872-5805(15)60192-5
详细信息
  • 中图分类号: TB332

A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation

  • 摘要: 研究燃油储罐中产生的油泥转化为多孔炭材料的表征和可行性。油泥含有80%碳,主要以脂肪族化合物形式存在。经600 ℃热处理和KOH存在下的热化学裂解得到2种碳质材料。热化学处理可显著提高所制多孔炭的织构特性,即微孔和介孔结构。该多孔炭表面积、总孔容与微孔比表面积分别为327.95 m2·g-1、 0.21 cm3·g-1和89.10 m2·g-1,其在水溶液中对Cd的吸附性能优于商业活性炭。油泥经热化学转化的多孔炭吸附剂能应用于污水处理,是一种转化废弃物的有效途径。
  • Dias J M, Alvim-Ferraz M C M, Almeida M F, et al. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review
    [J]. Journal of Environmental Management, 2007, 85(4): 833-846.
    Saka C. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2
    [J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 21-24.
    Moreno-Castilla C, Carrasco-Marín F, López-Ramón MV, et al. Chemical and physical activation of olive-mill waste water to produce activated carbons
    [J]. Carbon, 2001, 39(9): 1415-1420.
    Chen X, Jeyaseelan S, Graham N. Physical and chemical properties study of the activated carbon made from sewage sludge
    [J]. Waste Management, 2002, 22(7): 755-760.
    Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: A review
    [J]. Journal of Hazardous Materials, 2013, 261: 470-490.
    Chang C Y, Shie J L, Lin J P, et al. Major products obtained from the pyrolysis of oil sludge
    [J]. Energy & Fuels, 2000, 14(6): 1176-1183.
    Karamalidis A K, Voudrias E A. Release of Zn, Ni, Cu, SO42- and CrO42- as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge
    [J]. Journal of Hazardous Materials, 2007, 141(1): 591-606.
    Kriipsalu M, Marques M, Maastik A. Characterization of oily Sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications
    [J]. Journal of Material Cycles and Waste Management, 2008, 10(1): 79-86.
    Mazlova E A, Meshcheryakov S V. Ecological characteristics of oil sludges
    [J]. Chemistry and Technology of Fuels and Oils, 1999, 35(1): 49-53.
    Kumar Mandal A, Manab Sarma P, Singh B, et al. Bioremediation: a sustainable eco-friendly biotechnological solution for environmental pollution in oil industries
    [J]. Journal of Sustainable Development & Environmental Protection, 2011, 1(3): 5-23.
    Al-Futaisi A, Jamrah A, Yaghi B, et al. Assessment of alternative management techniques of tank bottom petroleum sludge in Oman
    [J]. Journal of Hazardous Materials, 2007, 141(3): 557-564.
    Seredych M, Bandosz T J. Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: The role of surface chemistry
    [J]. Journal of Colloid and Interface Science, 2006, 302(2): 379-388.
    ASTM. Standard test method for ash from petroleum products
    [S]. PA (USA): ASTM International D 482-487, 2005.
    ASTM. Standard test method for screening of pH in waste
    [S]. PA (USA): ASTM International D 4980-489, 2005.
    ASTM. Standard practice for nitric acid digestion of solid waste
    [S]. PA (USA): ASTM International D 5198-5192, 2005.
    Hubschmann H J. Handbook of GC/MS
    [M]. Germany: WILEY-VCH, 2009: 30-38.
    Deng H, Li G, Yang H, et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation
    [J]. Chemical Engineering Journal, 2010, 163(3): 373-381.
    Small C C, Hashisho Z, Ulrich A C. Preparation and characterization of activated carbon from oil sands coke
    [J]. Fuel, 2012, 92(1): 69-76.
    U S Environmental Protection Agency. Method 1311
    [S]. Toxicity characteristic leaching procedure (TCLP), 1999.
    Asia I O, Enweani I B, Eguavoen I O. Characterization and treatment of sludge from the petroleum industry
    [J]. African Journal of Biotechnology, 2006, 5(5): 461-466.
    Shie J L, Chang C Y. Thermal degradation kinetics of oil sludge in the presence of carbon dioxide
    [J]. Journal of Chinese Institute Environmental Engineering, 2001, 11(4): 307-316.
    Rocha O, Dantas R, Duarte M M. Oil sludge treatment by photocatalysis applying black and white light
    [J]. Chemical Engineering Journal, 2010, 157(1): 80-85.
    Liu J, Jiang X, Zhou L, et al. Pyrolysis treatment of oil sludge and model-free kinetics analysis
    [J]. Journal of Hazardous Materials, 2009, 161(3): 1208-1215.
    Andrade P F, Azevedo T F, Gimenez I, et al. Conductive carbon-clay nanocomposites from petroleum oily sludge
    [J]. Journal of Hazardous Materials, 2009, 167(3): 879-884.
    Varela R, Andrade J M, Muniategui S, et al. The comparison of two heavy fuel oils in composition and weathering pattern, based on IR, GC-FID and GC-MS analyses: application to the prestige wreackage
    [J]. Water Research, 2009, 43(4): 1015-1026.
    Domínguez A, Menéndez J A, Inguanzo M, et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges
    [J]. Journal of Chromatography A, 2003, 1012(2): 193-206.
    Marsh H, Rodriguez-Reinoso F. Activated Carbon. 1th ed
    [M]. London: Elsevier, 2006: 26-27, 155-156.
    Lippens B C, Boer J H. Studies on pore systems in catalysts: V. the t method
    [J]. Journal of Catalysis, 1965, 4(3): 319-323.
    Kante K, Qiu J, Zhao Z, et al. Development of surface porosity and catalytic activity in metal sludge/waste oil derived adsorbents: effect of heat treatment
    [J]. Chemical Engineering Journal, 2008, 138(1): 155-165.
    Ruparelia J P, Duttagupta S P, Chatterjee A K, et al. Potential of carbon nanomaterials for removal of heavy metals from water
    [J]. Desalination, 2008, 232(2): 145-155.
    WHO. Guidelines for drinking-water quality. 3rd ed. Volume 1: Recommendations
    [S].World Health Organization, 2008, ISBN 978 92 4 1547604.
    Wang Y, Sheng F, Cao Z, et al. Assessment of maturity of vineyard pruning compost by fourier transform infrared spectroscopy, biological and chemical analyses
    [J]. Landbauforschung VÖlkenrode, 2004, 54(3): 163-169.
    KE Yi-hu, YANG Er-tao, LIU Xin, et al. Preparation of porous carbons from non-metallic fractions of waste printed circuit boards by chemical and physical activation
    [J]. New Carbon materials, 2013, 28(2): 107-114. (柯义虎, 杨二桃, 刘 欣, 等. 用废弃印刷线路板非金属组分分离物制备多孔炭
    [J]. 新型炭材料, 2013, 28(2): 107-114.)
  • 加载中
计量
  • 文章访问数:  399
  • HTML全文浏览量:  19
  • PDF下载量:  696
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-20
  • 录用日期:  2015-09-07
  • 修回日期:  2015-08-01
  • 刊出日期:  2015-08-28

目录

    /

    返回文章
    返回