留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可视化黄色荧光石油焦基碳量子点高效检测Cu2+

王月 吴文婷 吴明铂 孙洪迪 谢辉 胡超 吴雪岩 邱介山

王月, 吴文婷, 吴明铂, 孙洪迪, 谢辉, 胡超, 吴雪岩, 邱介山. 可视化黄色荧光石油焦基碳量子点高效检测Cu2+[J]. 新型炭材料, 2015, 30(6): 550-559. doi: 10.1016/S1872-5805(15)60204-9
引用本文: 王月, 吴文婷, 吴明铂, 孙洪迪, 谢辉, 胡超, 吴雪岩, 邱介山. 可视化黄色荧光石油焦基碳量子点高效检测Cu2+[J]. 新型炭材料, 2015, 30(6): 550-559. doi: 10.1016/S1872-5805(15)60204-9
WANG Yue, WU Wen-ting, WU Ming-bo, SUN Hong-di, XIE Hui, HU Chao, WU Xue-yan, QIU Jie-shan. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. NEW CARBON MATERIALS, 2015, 30(6): 550-559. doi: 10.1016/S1872-5805(15)60204-9
Citation: WANG Yue, WU Wen-ting, WU Ming-bo, SUN Hong-di, XIE Hui, HU Chao, WU Xue-yan, QIU Jie-shan. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. NEW CARBON MATERIALS, 2015, 30(6): 550-559. doi: 10.1016/S1872-5805(15)60204-9

可视化黄色荧光石油焦基碳量子点高效检测Cu2+

doi: 10.1016/S1872-5805(15)60204-9
基金项目: 国家自然科学基金(51372277,51372028,21302224);中央高校基本科研业务费专项资金(14CX02060A,15CX08005A).
详细信息
    作者简介:

    王月,硕士研究生.E-mail:wy163tan@163.com;吴文婷,讲师,E-mail:wuwt@upc.edu.cn

    通讯作者:

    吴明铂,教授.E-mail:wumb@upc.edu.cn;邱介山,教授.E-mail:jqiu@dlut.edu.cn

  • 中图分类号: O613.71;O433.2

Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions

Funds: National Natural Science Foundation of China (51372277, 51372028, 21302224); Fundamental Research Funds for the Central Universities (14CX02060A,15CX08005A).
  • 摘要: 以石油焦为碳源,采用超声辅助的化学氧化法直接制备可视化黄色荧光碳量子点(CQDs)。作为非标记的探针,该CQDs无需任何修饰即可成功用于实际水样中Cu2+的检测。该荧光探针制备方法简单、经济,可快速响应(3 s),具有良好的选择性、灵敏性和可重复利用性,并且可实现"混合即检测"的快速检测目的。其线性检出范围较宽,为0.25~10 μmol/L,检出限为0.029 5 μmol/L。光诱导电子转移机理可很好地解释Cu2+猝灭CQDs的过程,本文提出的CQDs-Cu2+-EDTA "off-to-on"检测机理为金属离子荧光探针的开发奠定了理论基础。石油焦基CQDs在实际水样Cu2+的检测中具有快速响应性,在实际传感器应用领域具有很好的实际应用价值。
  • Sung T W, Lo Y L. Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection[J]. Sensors and Actuators B-Chemical, 2012, 165(1): 119-125.
    Liu J, Lu Y. A DNA zyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. Journal of the American Chemical Society, 2007, 129(32): 9838-9839.
    Poursaberi T, Hajiagha-Babaei L, Yousefi M, et al. The synthesis of a new thiophene-derivative schiff's base and its use in preparation of copper-ion selective electrodes[J]. Electroanal, 2001, 13(18): 1513-1517.
    Zhao Y, Zhang X B, Han Z X, et al. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells[J]. Analitical Chemistry, 2009, 81(16): 7022-7030.
    Piacenti da Silva M, Araujo Domingues Zucchi OL, Ribeiro-Silva A, et al. Discriminant analysis of trace elements in normal, benign and malignant breast tissues measured by total reflection X-ray fluorescence[J]. Spectrochimica Acta Part B, 2009, 64(6): 587-592.
    Zhang J F, Zhou Y, Yoon J, et al. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions)[J]. Chemical Society Reviews, 2011, 40(7): 3416-3429.
    Balogh I S, Ruschak M, Andruch V,et al. An investigation of the reaction of copper ions with dimethylindodicarbocyanine dye: An application for the determination of Cu (I), Cu (II) and Cu (III)[J]. Talanta, 2008, 76(1): 111-115.
    Royzen M, Dai Z, Canary J W. Ratiometric displacement approach to Cu (II) sensing by fluorescence[J]. Journal of the American Chemical Society, 2005, 127(6): 1612-1613.
    Li P, Duan X, Chen Z, et al. A near-infrared fluorescent probe for detecting copper (II) with high selectivity and sensitivity and its biological imaging applications[J]. Chemical Communication, 2011, 47(27): 7755-7757.
    Li Y, Zhang X, Zhu B, et al. A simple but highly sensitive and selective colorimetric and fluorescent probe for Cu2+ in aqueous media[J]. Analyst, 2011,136(6): 1124-1128.
    Xie H Y, Liang J G, Zhang Z L, et al. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe[J]. Spectrochimica Acta Part A, 2004, 60(11): 2527-2530.
    Jung H S, Kwon P S, Lee J W, et al. Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells[J]. Journal of the American Chemical Society, 2009, 131(5): 2008-2012.
    Eggeling C, Volkmer A, Seidel C A. Molecular photobleaching kinetics of rhodamine 6G by one-and two-photon induced confocal fluorescence microscopy[J]. Chem Phys Chem, 2005, 6(5): 791-804.
    Freeman R, Finder T, Willner I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations[J]. Angewandte Chemie International Edition, 2009, 48(42): 7818-7821.
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737.
    Ponomarenko L, Schedin F, Katsnelson M, et al. Chaotic dirac billiard in graphene quantum dots[J]. Science, 2008, 320(5874): 356-358.
    Peng J, Gao W, Gupta BK, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012, 12(2): 844-849.
    Liu S, Tian J, Wang L, et al. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-fee detection of Cu (II) ions[J]. Advanced Materials, 2012, 24(15): 2037-2041.
    Wang F, Gu Z, Lei W, et al. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions[J]. Sensors and Actuators B-Chemical, 2014, 190: 516-522.
    Christina C S, Zaher H, Ania C U. Preparation and characterization of activated carbon from oil sands coke[J]. Fuel, 2012, 92(1): 69-76.
    Jiang B C, Zhang Y C, Zhou J X. Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon[J]. Fuel, 2008, 87(10): 1844-1848.
    Wu M B, Zha Q F, Qiu J S, et al. Preparation of porous carbons from petroleum coke by different activation methods[J]. Fuel, 2005, 84(14): 1992-1997.
    Wu M B, Wang Y, Wu W T, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon, 2014, 78(11): 480-489.
    Wang J, Wang C F, Chen S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns[J]. Angewandte Chemie International Edition, 2012, 51(37): 9431-9435.
    Liu L, Li Y, Zhan L, et al. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions[J]. Science China Chemistry, 2011, 54(8): 1342-1347.
    Zhang X, Wang S, Liu M, et al. Size tunable fluorescent nano-graphite oxides: Preparation and cell imaging applications[J]. Physical Chemistry Chemical Physics, 2013 ,15(43): 19013-19018.
    Li M, Cushing S K, Zhou X, et al. Fingerprinting photoluminescence of functional groups in graphene oxide[J]. Journal of Materials Chemistry, 2012, 22(44): 23374-23379.
    Zhu S, Zhang J, Tang S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications[J]. Advanced Functional Materials, 2012, 22(22): 4732-4740.
    Lu W, Qin X, Liu S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (II) ions[J]. Analytical Chemistry, 2012, 84(12): 5351-5357.
    Hu C, Yu C, Li M Y, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu (II) detection[J]. Small, 2014, 10(23): 4926-4933.
    Liu R, Li H T, Kong W Q, et al. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots[J]. Materials Research Bulletin, 2013, 48(7): 2529-2534.
    Liu Y S, Zhao Y N, Zhang Y Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection[J], Sensors and Actuators B-Chemical, 2014, 196: 647-652.
    Liu X J, Zhang N, Bing T, et al. Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+ [J]. Analytical Chemistry, 2014, 86(5): 2289-2296.
    Hu S, Zhao Q, Dong Y, et al. Carbon-dot-loaded alginate gels as recoverable probes: Fabrication and mechanism of fluorescent detection[J]. Langmuir, 2013, 29(40): 12615-12621.
    Sun H, Gao N, Wu L, et al. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions[J]. Chemistry-A European Journal, 2013, 19(40): 13362-13368.
    Yang S W, Sun J, Li X B, et al. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. Journal of Materials Chemistry A, 2014, 2(23): 8660-8667.
    Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes[J]. Analytical Chemistry, 2002, 74(19): 5132-5138.
    He Q W, Miller E W, Wong A P, et al. A selective fluorescent sensor for detecting lead in living cells[J]. Journal of the American Chemical Society, 2006, 128(29): 9316-9317.
    Sun H J, Wu L, Wei W L, et al. Recent advances in graphene quantum dots for sensing[J]. Material Today, 2013, 16(11): 433-442.
    Liu J M, Lin L P, Wang X X, et al. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe[J]. Analyst, 2012, 137(11): 2637-2642.
    Bai J M, Zhang L, Liang R P, et al. Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate pensing[J]. Chemistry-A European Journal, 2013, 19(12): 3822-3826.
  • 加载中
计量
  • 文章访问数:  391
  • HTML全文浏览量:  18
  • PDF下载量:  647
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-12
  • 录用日期:  2016-01-05
  • 修回日期:  2015-12-09
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回