留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电化学阳极氧化的多壁碳纳米管表面改性

张巍松 刘玉婷 吴刚平

张巍松, 刘玉婷, 吴刚平. 基于电化学阳极氧化的多壁碳纳米管表面改性[J]. 新型炭材料, 2020, 35(2): 155-164. doi: 10.1016/S1872-5805(20)60481-4
引用本文: 张巍松, 刘玉婷, 吴刚平. 基于电化学阳极氧化的多壁碳纳米管表面改性[J]. 新型炭材料, 2020, 35(2): 155-164. doi: 10.1016/S1872-5805(20)60481-4
ZHANG Wei-song, LIU Yu-ting, WU Gang-ping. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation[J]. NEW CARBON MATERIALS, 2020, 35(2): 155-164. doi: 10.1016/S1872-5805(20)60481-4
Citation: ZHANG Wei-song, LIU Yu-ting, WU Gang-ping. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation[J]. NEW CARBON MATERIALS, 2020, 35(2): 155-164. doi: 10.1016/S1872-5805(20)60481-4

基于电化学阳极氧化的多壁碳纳米管表面改性

doi: 10.1016/S1872-5805(20)60481-4
基金项目: 国家自然科学基金委员会-中国石油天然气集团有限公司石油化工联合基金(U1362107);国家自然科学基金委-山西煤基低碳联合基金(U1810116);山西省科技重大专项项目(20181101020).
详细信息
    作者简介:

    张巍松,硕士研究生.E-mail:zhangweisong@sxicc.ac.cn

    通讯作者:

    吴刚平,博士,研究员.E-mail:wgp@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation

Funds: National Natural Science Foundation of China & China National Petroleum Corporation Joint Fund(U1362107); National Natural Science Foundation of China-Shanxi Coal-based Low Carbon Joint Fund (U1810116); Major science and technology projects of Shanxi Provence (20181101020).
  • 摘要: 分别以硫酸和氢氧化钠溶液为电解液,用阳极氧化方法对多壁碳纳米管进行表面改性处理。采用了扫描电子显微镜,透射电子显微镜,Zeta电位仪,红外光谱仪,X-射线光电子能谱仪和拉曼光谱仪等表征手段对多壁碳纳米管的形貌、分散性、功能化程度及缺陷程度等方面进行了表征。多壁碳纳米管经阳极氧化后,表面含氧官能团数量增加,这提高了其在水溶液中的分散性。但是在不同的电解液中阳极氧化后,纳米管的分散性、官能团种类和表面缺陷情况不同。在氢氧化钠溶液中阳极氧化会在纳米管表面引入更多含氧官能团,而在硫酸溶液中阳极氧化会在纳米管表面引入更多缺陷。
  • Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297:787-792.
    Islam M S, Deng Y, Tong L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability:Towards next generation aerospace composites and energy storage applications[J]. Carbon, 2016, 96:701-710.
    Wu G P, Wang Y Y, Li D H, et al. Direct electrochemical attachment of carbon nanotubes to carbon fiber surfaces[J]. Carbon, 2011, 49:2152-2155.
    Liu Y T, Wu G P, Lu C X. Grafting of carbon nanotubes onto carbon fiber surfaces by step-wise reduction of in-situ generated diazonium salts for enhancing carbon/epoxy interfaces[J]. Mater Lett, 2016, 134:75-79.
    Zhou Z W, Yan Q H, Liu C H, et al. An arm-like electrothermal actuator based on superaligned carbon nanotubes/polymer composites[J]. New Carbon Mater, 2017, 32:411-418.
    Paul S, Rajbongshi B, Bora B, et al. Organic photovoltaic cells using MWCNTs[J]. New Carbon Mater, 2017, 32:27-34.
    Yu J R, Grossiord N, Koning C E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon, 2017, 45:618-623.
    Liu J, Rinzler A G, Dai H J, et al. Fullerene Pipes[J]. Science, 1998, 280:1253-1256.
    Ji J Y, Lively B, Zhong W H. Soy protein-assisted dispersion of carbon nanotubes in a polymer matrix[J]. Mater Express, 2012, 2:76-82.
    Avile's F, Cauich-Rodriguez J V, Moo-Tah L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon, 2009, 47:2970-2975.
    Yan Y B, Miao J W, Yang Z H, et al. Carbon nanotube catalysts:recent advances in synthesis, characterization and applications[J]. Chem Soc Rev, 2015, 44:3295-3346.
    Osorio A G, Silveira I C L, Bueno V L, et al. H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media[J]. Appl Surf Sci, 2018, 255:2485-2489.
    Flavin K, Kopf I, Del Canto E, et al. Controlled carboxylic acid introduction:a route to highly purified oxidized single-walled carbon nanotubes[J]. J Mater Chem, 2011, 21:17881-17887.
    Datsyuk V, Kalyva M, Papagelis K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46:833-840.
    Ziegler K J, Gu Z N, Peng H Q, et al. Controlled oxidative cutting of single-walled carbon nanotubes[J]. J Am Chem Soc, 2005, 127:1541-1547.
    Stobinski L, Lesiak B, Kövér L, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods[J]. J Alloy and Compd, 2010, 501:77-84.
    Chiang Y C, Lin W H, Chang Y C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation[J]. Appl Surf Sci, 2011, 257:2401-2410.
    Price G J, Nawaz M, Yasin T, et al. Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance[J]. Ultraso Sonochem, 2018, 40:123-130.
    Rafailov P M, Sasaki T, Dettlaff-Weglikowska U, et al. High levels of electrochemical doping of carbon nanotubes:evidence for a transition from double-layer charging to intercalation and functionalization[J]. J Phys Chem B, 2008, 112:5368-73.
    Pumera M, Sasaki T, Iwai H. Relationship between carbon nanotube structure and electrochemical behavior:heterogeneous electron transfer at electrochemically activated carbon nanotubes[J]. Chem Asian J, 2008, 3:2046-55.
    Rafailov P M, Milenov T I, Monev M, et al. Spectroscopic studies on electrochemically doped and functionalized single-walled carbon nanotubes[J]. J Optoelectron, 2009, 11:1339-42.
    Rafailov P M, Thomsen C, Monev M, et al. Electrochemical functionalization of SWNT bundles in acid and salt media as observed by Raman and X-ray photoelectron spectroscopy[J]. Phys Stat Sol(b), 2008, 245:1967-70.
    Sumanasekera G U, Allen J L, Fang S L, et al. Electrochemical oxidation of single wall carbon nanotubes bundles in sulfuric acid[J]. J Phys Chem B 1999, 103:4294-7.
    Hiura H, Ebbesen T W, Fujita J, et al. Role of sp3 defect structures in graphite and carbon nanotubes[J]. Nature, 1994, 367:148-151.
    Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio[J]. Carbon, 2003, 41:2939-1948.
    Cho J, Boccaccini A R, Shaffer M S P. Ceramic matrix composites containing carbon nanotubes[J]. J Mater Sci, 2009, 44:1934-1951.
    Zhang J, Zou H L, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes[J]. J Phys Chem B, 2003, 107:3712-3718.
    Kim S W, Kim T, Kim Y S, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers[J]. Carbon, 2012, 50:3-33.
    Smith B, Wepansnick K, Schrote K E, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes[J]. Environ Sci Technol, 2009, 43:819-825.
    Jiang L Q, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. J Colloid Interf Sci, 2003, 260:89-94.
    Li Y H, Wang S G, Luan Z K, et al. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes[J]. Carbon, 2003, 41:1057-1062.
    Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy[J]. J Raman Spectrosc, 2007, 38:728-736.
    Scheibe B, Borowiak-Palen E, Kalenczuk R J. Oxidation and reduction of multiwalled carbon nanotubes-preparation and characterization[J]. Mater Charact, 2010, 61:185-191.
    Ramanathan T, Fisher F T, Ruoff R S, et al. Amino-functionalized carbon nanotubes for binding to polymers and biological systems[J]; Chem Mater, 2005, 17:1290-1295.
    Guo C X, Wang Y W, Tong X L, et al. Oxidative modification of multi-wall carbon nanotubes for the electrochemical detection of dopamine[J]. New Carbon Mater, 2016, 31:485-491.
    Zhao D, Jiang Y, Ding Y, et al. Polymer/carbon nanotubes nanocomposites:relationship between interfacial adhesion and performance of nanocomposites[J]. J Mater Sci, 2018, 53:10160-10172.
    Okpalugo T I T, Papakonstantinou P, Murphy H, et al. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs[J]. Carbon, 2005, 43:153-161.
    Ago H, Kugler T, Cacialli F, et al. Work functions and surface Functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999, 103:8116-8121.
    Kundu S, Wang Y M, Xia W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotubes surfaces:a quantitative high-resolution XPS and TPD/TPR study[J]. J Phys Chem C, 2008, 112:16869-16878.
    Zhang J C, Tang Y J, Yi Y, et al. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays[J]. New Carbon Mater, 2016, 2:213-223.
    Wepasnick K A, Smith B A, Schrote K E, et al. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments[J]. Carbon, 2011, 49:24-36.
    Moonoosawmy K R, Kruse P. Ambiguity in the characterization of chemically modified single-walled carbon nanotubes:a raman and ultraviolet-visible-near-infrared study[J]. J Phys Chem C, 2009, 113:5133-5140.
    Ren F, Kanaan S A, Khalkhal F, et al. Controlled cutting of single-walled carbon nanotubes and low temperature annealing[J]. Carbon, 2013, 63:61-70.
    Kozlowski C, Sherwood P M A. X-Ray photoelectron-spectroscopic studies of carbon-fibre surfaces part 5.-the effect of pH on surface oxidation[J]. J Chem Soc Faraday Trans I, 1985, 81:2745-2756.
    Mazov I, Kuznetsov V L, Simonova I A, et al. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology[J]. Appl Surf Sci, 2012, 258:6272-6280.
    Kitagawa T, Tanaka T, Takata Y, et al. Ionically dissociative hydrocarbons containingthe C60 skeleto[J]. Tetrahedron, 1997, 53:9965-9976.
    Rafailov P M, Thomsen C, Monev M, et al. Electrochemical functionalization of SWNT bundles in acid and salt media as observed by Raman and X-ray photoelectron spectroscopy[J]. Phys Status Solidi B, 2008, 245, 1967-1970.
  • 加载中
图(1)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  58
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-27
  • 录用日期:  2020-04-28
  • 修回日期:  2020-03-10
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回