留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有最佳CO2吸附容量和产率的炭分子筛制备

Ugur Morali Hakan Demiral Sevgi Sensoz

Ugur Morali, Hakan Demiral, Sevgi Sensoz. 具有最佳CO2吸附容量和产率的炭分子筛制备[J]. 新型炭材料, 2020, 35(3): 209-219. doi: 10.1016/S1872-5805(20)60485-1
引用本文: Ugur Morali, Hakan Demiral, Sevgi Sensoz. 具有最佳CO2吸附容量和产率的炭分子筛制备[J]. 新型炭材料, 2020, 35(3): 209-219. doi: 10.1016/S1872-5805(20)60485-1
Ugur Morali, Hakan Demiral, Sevgi Sensoz. Preparation of new carbon molecular sieves for optimized carbon dioxide adsorption and product yield[J]. NEW CARBON MATERIALS, 2020, 35(3): 209-219. doi: 10.1016/S1872-5805(20)60485-1
Citation: Ugur Morali, Hakan Demiral, Sevgi Sensoz. Preparation of new carbon molecular sieves for optimized carbon dioxide adsorption and product yield[J]. NEW CARBON MATERIALS, 2020, 35(3): 209-219. doi: 10.1016/S1872-5805(20)60485-1

具有最佳CO2吸附容量和产率的炭分子筛制备

doi: 10.1016/S1872-5805(20)60485-1
详细信息
    通讯作者:

    Ugur Morali.E-mail:umorali@ogu.edu.tr

  • 中图分类号: TQ127.1+1

Preparation of new carbon molecular sieves for optimized carbon dioxide adsorption and product yield

More Information
    Corresponding author: Ugur Morali.E-mail:umorali@ogu.edu.tr
  • 摘要: 采用田口设计方法,在活性炭上化学气相沉积甲烷制备出炭分子筛。在1 bar/273 K下测试炭分子筛对CO2吸附容量。制备高性能炭分子筛取决于最佳化学气相沉积条件。最佳合成条件不仅提供最大CO2吸附容量,而且提高产率。所制炭分子筛的最高产率为91 wt.%,最大CO2吸附容量为2.622 8 mmol g-1。通过氮吸附、CO2吸附、元素分析、官能团分析和孔结构分析对炭分子筛进行表征。这种田口设计方法有助于炭分子筛对CO2的可控吸附,有望成为炭分子筛制备条件的有用方法。
  • X Zhang, W Li, A Lu. Designed porous carbon materials for efficient CO2 adsorption and separation[J]. New Carbon Materials, 2015, 30(6):481-501.
    J Sreńscek-Nazzal, K Kie?basa. Advances in modification of commercial activated carbon for enhancement of CO2 capture[J]. Applied Surface Science, 2019, 494:137-151.
    G Huang, Y Liu, X Wu, et al. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance[J]. New Carbon Materials, 2019, 34(3):247-257.
    H Demiral, I Demiral. Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition[J]. Advanced Powder Technology, 2018, 29(12):3033-3039.
    Z Tang, H Zhuo, G Yang, et al. Preparation of nanoporous carbons with hierarchical pore structure for CO2 capture[J]. New Carbon Materials, 2013, 28(1):55-60.
    X Wu, C Zhang, Z Tian, et al. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture[J]. New Carbon Materials, 2018, 33(3):252-261.
    I Majchrzak-Kuc?ba, D Wawrzyńczak, ?ciubid?o, et al. Stability and regenerability of activated carbon used for CO2 removal in pilot DR-VPSA unit in real power plant conditions[J]. Journal of CO2 Utilization, 2019, 29:1-11.
    H Deng, S Jin, Z Liang, et al. Synthesis of porous carbons derived from metal-organic coordination polymers and their adsorption performance for carbon dioxide[J].New Carbon Materials, 2012, 27(3):194-199.
    T Song, J Liao, J Xiao, et al. Effect of micropore and mesopores structure on CO2 adsorption by activated carbons from biomass[J]. New Carbon Materials, 2015, 30(2):156-166.
    L Liu, J Lu, Y Zhang, et al. Synthesis of nitrogen-doped graphitic carbon nanocapsules from a poly (ionic liquid) for CO2 capture[J]. New Carbon Materials, 2017, 32(4):380-384.
    S K Salestan, M Taghizadeh. The effect of impurity on the separation of CO2 from N2 by MCM-41:A simulation study[J]. Chemical Physics, 2019, 524:124-130.
    L Chen, X Jiang, J Qiu, et al. Selective CO2 adsorption and H2 storage in two porous amine-pillared graphene oxide frameworks[J]. Journal of Solid State Chemistry, 2019, 279:120980.
    J McEwen, J D Hayman, A O Yazaydin. A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon[J]. Chemical Physics, 2013, 412:72-76.
    Z Jin, J Wang, R Zhao, et al. Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture[J]. New Carbon Materials, 2018, 33(5):392-401.
    N A Rashidi, S Yusup. Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption[J]. Journal of Cleaner Production, 2017, 168:474-486.
    U Morali, H Demiral, S Sensoz. Optimization of activated carbon production from sunflower seed extracted meal:Taguchi design of experiment approach and analysis of variance[J]. Journal of Cleaner Production, 2018, 189:602-611.
    U Morali, H Demiral, S Sensoz. Synthesis of carbon molecular sieve for carbon dioxide adsorption:Chemical vapor deposition combined with Taguchi design of experiment method[J]. Powder Technology, 2019, 355:716-726.
    Y Yamane, H Tanaka, M T Miyahara. In silico synthesis of carbon molecular sieves for high-performance air separation[J]. Carbon, 2019, 141:626-634.
    I Krkljus, T Steriotis, G Charalambopoulou, et al. H2/D2 adsorption and desorption studies on carbon molecular sieves with different pore structures[J]. Carbon, 2013, 57:239-247.
    H R Yu, S Cho, B C Bai, et al. Effects of fluorination on carbon molecular sieves for CH4/CO2 gas separation behavior[J]. International Journal of Greenhouse Gas Control, 2012, 10:278-284.
    S Cho, H R Yu, T H Choi, et al. Surface functionalization and CO2 uptake on carbon molecular sieves:Experimental observation and theoretical study[J]. Applied Surface Science, 2018, 447:8-14.
    A Wahby, J Silvestre-Albero, A Sepúlveda-Escribano, et al. CO2 adsorption on carbon molecular sieves[J]. Microporous and Mesoporous Materials, 2012, 164:280-287.
    E Rodriguez, R Garcia. Low-cost hierarchical micro/macroporous carbon foams as efficient sorbents for CO2 capture[J]. Fuel Processing Technology, 2017, 156:235-245.
    P Zhang, Y Zhong, J Ding, et al. A new choice of polymer precursor for solvent-free method:Preparation of N-enriched porous carbons for highly selective CO2 capture[J]. Chemical Engineering Journal, 2019, 355:963-973.
    J Uebbing, L K Rihko-Struckmann, K Sundmacher. Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies[J]. Applied Energy, 2019, 233-234:271-282.
    F Qin, Z Guo, J Wang, et al. Nitrogen-doped asphaltene-based porous carbon nanosheet for carbon dioxide capture[J]. Applied Surface Science, 2019, 491:607-615.
    L Shao, Y Sang, J Huang. Imidazole-based hyper-cross-linked polymers derived porous carbons for CO2 capture[J]. Microporous and Mesoporous Materials, 2019, 275:131-138.
    Z Tian, J Huang, X Zhang, et al. Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption[J]. Microporous and Mesoporous Materials, 2018, 257:19-26.
    S Zhang, Q Zhou, X Jiang, et al. Preparation and evaluation of nitrogen-tailored hierarchical meso-/micro-porous activated carbon for CO2 adsorption[J]. Environmental Technology, 2019:1-10.
    M Dizbay-Onat, U K Vaidya, C T Lungu. Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics[J]. Industrial Crops and Products, 2017, 95:583-590.
    D Tiwari, H Bhunia, P K Bajpai. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin:kinetics, isotherm and thermodynamic studies[J]. Applied Surface Science, 2018, 439:760-771.
  • 加载中
图(1)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  37
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-20
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回